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Fourier Analysis II: 
 

Some Examples of the Use of Fourier Analysis 
 

A. Fourier Analysis of a Pure-Tone/Single Frequency Waveform 
 
     The simplest example of the use of Fourier analysis is that of determining the 
harmonic content of a pure tone, periodic waveform of a single frequency,  f  e.g. applied 
as the input stimulus to a system: 
 

Si (t) = Ai cos (2f t) = Ai cos ( t) 
 

where Ai is the amplitude of the input stimulus, Si (t) and    = 2f  is the “angular” 
frequency, in units of radians per second. The period,  of the waveform is    = 1/f, in 
units of seconds.  
 
Then if the Fourier series representation of Si (t) is given by: 

 
we see by inspection that for this equality to hold, the n = 0 coefficient, ao = 0, and all of 
the n > 0 coefficients, an and bn must also vanish, except for the a1 coefficient, which 
must be a1 = Ai. Note that these results can also be obtained by explicitly carrying out the 
inner products < Si (t), 1>,  < Si (t), cos (n t)>  and < Si (t), sin (n t)>, as defined above. 
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B. Fourier Analysis of a Periodic, Symmetrical Square Wave 
 

     A temporally-periodic, bipolar square wave of unit amplitude and 50% duty cycle is 
shown in the figure below: 

     Since this waveform repeats indefinitely, then, without any loss of generality we  
can arbitrarily choose (i.e. re-define) the starting time, t1 of this waveform to be t1 = 0 
seconds. Thus the ending time, for one period of this waveform is t2 =   seconds.  
Then 1 =  t1 = 0, and  2 =  t2 =   =  2f  =  2/ *  =  2, since  f  = 1/. 

 

     Mathematically, we define the square wave, for the one cycle as indicated in the figure 
above, as: 

f ( ) = f ( t) = + 1   for   0   <   
and: 

 f ( ) = f ( t) =  1   for      < 2 
 

     This type of waveform is known as a bipolar square wave. It is positive, with unit 
amplitude for the first half of its cycle, and negative, with unit amplitude for the second 
half of its cycle. Thus, this waveform has a 50% duty cycle. Note also that this waveform 
has odd reflection symmetry, both about its  -midpoint (i.e. its  t-midpoint),  
  =  t = ½   = , and reflection about its  f ( ) = f ( t) = 0 midpoint. The waveform 
is said to have odd symmetry if it changes sign upon reflection, and has even symmetry if 
it does not change sign upon reflection. 

 

     Note also that this waveform is an example of a function which is piece-wise 
continuous. The waveform has discrete, but finite “jumps” when   = 0,  and 2. 
Mathematically, the slopes of this waveform at these  -points, i.e. the  -derivatives of  
 f ( ) are formally infinite:  

 

 f ( ) /   | = 0  = + ,     f ( ) /   | =   =  ,   and    f ( ) /   | = 2  = + . 
 

This is OK - mathematically we can deal with this just fine! 

f( t) 

f( t) = +1 

f( t) = 1 

 t 

 t1   = 0  t2   =       
          = 2 

 (t2  t1)  
   =     
   = 2  
 

f( t) = 0 

½   
=    



UIUC Physics 406 Acoustical Physics of Music 

 
 

Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, IL,  
2000 - 2017. All rights reserved. 

3

     Note further that this bipolar, 50% duty-cycle square wave has a “d.c. offset”, or  
“time”-averaged value (averaged over one cycle) of  <f ( ) > = 0. Formally, the 
averaging of a periodic function over one of its cycles, which for the  -variable, one 
cycle in theta is  = 2  1  = 2, is mathematically defined as: 

 
For the periodic bipolar, 50% duty-cycle square wave, the  -averaging of this waveform 
over one  -cycle is: 

 
QED. 
 
We now obtain the Fourier coefficients a0, an and bn by taking the following inner 
products: 

 
Thus, if the reader compares the inner product for determining a0 with that for obtaining 
the  -averaged value of  f ( ), i.e. <f ( ) >, one sees that: 

which is just what we expected! 
 
     Now, recall that here, since   =  t, the “generic” variable, n  = n t = n . Thus: 
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Now the indefinite integrals: 

 
Thus, the Fourier coefficients,  an and bn, for n > 0 are: 

 
since sin(0) = sin(n) = sin(2n) = 0 for all integers, n = 1, 2, 3, 4,..... , and: 

 
Now cos(0) = cos(2n) = +1 for all integers, n = 1, 2, 3, 4,..... , and  cos(n) = +1 for the 
even integers, n = 2, 4, 6, 8, ....., and cos(n) = 1 for the odd integers, n = 1, 3, 5, 7, ..... 

 

Thus, we see that all of the Fourier coefficients, an for the even functions, cos(n) vanish  
i.e. an = 0 for all integers, n = 1, 2, 3, 4, ....  

 

The Fourier coefficients, bn for the odd functions, sin(n) vanish for the even harmonics, 
i.e. bn = 0 when n = 2, 4, 6, 8, ....., but the Fourier coefficients, bn are non-zero for the odd 
harmonics, when n = 1, 3, 5, 7, ....., where bn = +4/n. 

 

Thus, the Fourier series expansion of a periodic, bipolar, 50% duty-cycle square wave as 
shown in the above figure is given by: 

Using the replacement: nodd = 2 m 1, m = 1, 2, 3, 4, ....... in the above summation, we 
can alternatively write the Fourier series expansion for this square wave as: 

 
Thus, we see that for the periodic, bipolar, 50% duty-cycle square wave, only odd 
harmonics (i.e. odd integer multiples of the fundamental) are present in this waveform. 
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     Since the even Fourier coefficients, an = 0 for all harmonics (n  0) of this waveform, 
then the magnitudes of the Fourier amplitudes, |rn| associated with the odd harmonics are 
|rn| = (an

2 + bn
2)½ = bn = 4/n for odd n = 1, 3, 5, ... etc., i.e. |r2m1| = b2m1 = 4/(2m1)  

for m = 1, 2, 3, 4, 5... etc. Note that all phase angles for these odd harmonics are  
n =  tan1 (bn / an) = tan1 ()  = ½  = 90o (or equivalently, n =  tan1 (an / bn) =  
tan1 (0) = 0 = 0o, since n = /2  n = 90o  n).  

 

     Only the odd harmonics are present in the periodic, bipolar, 50% duty-cycle square 
wave (as drawn in the figure above) because this waveform, as we have discussed above, 
has intrinsically odd reflection symmetry properties! Thus, simply recognizing the 
symmetry properties of a waveform instantly tells one which harmonics of the 
fundamental will or will not be present! Note that the use of symmetry arguments very 
often is extremely powerful and helpful in terms of gaining insight into the behavior of a 
physical system! 

 

     If we had flipped the polarity of the waveform, such that initially the waveform was 
negative during the first half of its cycle, then positive during the second half of its cycle, 
this waveform would still have odd symmetry, and thus still contain the same odd 
harmonics. However, for this waveform, the sign of the non-zero, odd Fourier 
coefficients, bn would reverse - i.e. bn = 4/n, for odd n = 1, 3, 5, ... etc. One can see 
this by inspection of the details of working out the above inner production computation 
for the determination of the bn Fourier coefficients, as well as from the use of reflection 
symmetry arguments. 

 

     If we had shifted the offset (e.g. by one unit) of the original periodic, bipolar, 50% 
duty-cycle square wave, such as to make this waveform a unipolar square wave, by 
adding a d.c. offset (i.e. constant term) to the waveform, then this would only affect the 
a0 term in the Fourier series expansion of the waveform. For an upward-shifted unipolar 
square wave of unit amplitude, for one cycle, the mathematical description of such a 
wave is given by: 

f ( ) = f ( t) = + 2   for   0   <   
and: 

 f ( ) = f ( t) =     0   for      < 2 
 

The corresponding n = 0 Fourier coefficient for this waveform is a0 = 2. The mean, or 
average value of  f ( ), averaging over one cycle of this unipolar, 50% duty-cycle square 
wave is <f ( ) > = 1 (= a0/2 = 2/2 = 1). 

 

     Note that if we had used a periodic, bipolar, 50% duty-cycle square wave which had 
an amplitude of Ai (instead of a unit amplitude), then from the inner product computation 
of the odd Fourier coefficients, bn we would instead have obtained bn = 4Ai/n for the odd 
harmonics, n = 1, 3, 5, 7, .... etc. Since mathematically, such a waveform would be 
defined as: 

f ( ) = f ( t) = +Ai    for   0   <   
and: 

 f ( ) = f ( t) = Ai   for      < 2 
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     If we had shifted the phase of the original periodic, bipolar, 50% duty-cycle square 
wave by e.g.  =  /2 =  90o, then this would change the odd-symmetry nature of the 
waveform to even symmetry. Mathematically, this even-symmetry square wave would be 
described as: 

 f ( ) = f ( t) = 1   for      0    <  /2 
and: 

 f ( ) = f ( t) = +1   for   /2   < 3/2 
and: 

 f ( ) = f ( t) = 1   for   3/2   < 2 
 

The Fourier coefficients for this even-symmetry waveform would be a0 = 2, all even-n 
Fourier coefficients, an = 0, for n = 2, 4, 6, .... etc., but all odd-n  Fourier coefficients,  
an = 4/n for n = 1, 3, 5, 7, .... etc. and all Fourier coefficients, bn = 0 for all n = 1, 2, 3, 
4, 5, 6, .... etc. 

 

     If we had shifted the phase of the original periodic, bipolar, 50% duty-cycle square 
wave by e.g. a random shift,  , then very likely the resulting waveform would have 
neither odd nor even reflection symmetry properties (unless   happened to be e.g.  
 /2 or  ). Mathematically, this waveform would be described as: 
 

 f ( ) = f ( t) = 1   for       0       <    
and: 

 f ( ) = f ( t) = +1   for       <  +  
and: 

 f ( ) = f ( t) = 1   for    +    < 2 
 

     For a waveform that has no reflection symmetry properties whatsoever, in general all 
of the Fourier coefficients, a0, the an and bn coefficients will be non-zero. 

 

     Because of the existence of  reflection symmetries in a waveform, certain of the 
Fourier coefficients, a0, the an and/or bn will vanish. 
 

     However, even for “no-symmetry” waveforms, as we have discussed above, for each 
harmonic, n of the fundamental, there is physically only one amplitude, |rn| = (an

2 + bn
2)½ 

and one phase angle, n =  tan1 (bn / an)  (or equivalently n = tan1 (an / bn)) associated 
with that harmonic. 

 

     If the duty-cycle of the waveform is varied from its “symmetrical” value of 50%, this 
will have a corresponding impact on all of the Fourier coefficients, a0, the an and/or bn, 
e.g. since the d.c. value of  e.g. a 10% duty-cycle bipolar square wave certainly is not 0! 
We will discuss this case further, below. 

 

     For values of the duty cycle other than “easy” choices of integer fractions of  the full 
cycle in the “generic” theta variable (i.e.  = 2  1  = 2), the evaluation of the inner 
products used to determine the Fourier coefficients, a0, the an and bn can be very tedious 
to carry out by hand. However, these are straightforward to carry out on a computer, 
using e.g. numerical integration techniques. 
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     The amplitudes, |rn| = (an
2 + bn

2)½ = 4/n  for the first twenty harmonics (i.e. n < 20) 
associated with the periodic, bipolar, 50% duty-cycle, unit amplitude square wave are 
shown in the figure below: 

 
The following figure shows the same information as above, except that it is shown as a 
semi-log plot: 

 
     As can be seen from the above figures, in addition to the fundamental, at frequency,  f, 
only the odd harmonics, at frequencies 3f, 5f, 7f, 9f, .... etc. contribute to creating this 
waveform. 
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     Note that the ratio of harmonic amplitudes for this square wave, relative to the 
fundamental is |rn| / |r1|  = 1/n, which does not decrease very fast, as the harmonic #, n  
increases (n = 3, 5, 7, 9, ... etc.). 

 

     As far as harmonic content goes, any kind of square wave, compared to just about any 
other kind of waveform is extremely rich in harmonics. The reason for this is due to the 
very sharp “breaks” or “jumps” (i.e. the discontinuities) in the waveform. To make such 
sharp edges in the waveform, extremely high harmonics, with correspondingly very short 
wavelengths are needed, even though their relative amplitudes may be small. 

 

     The human ear hears a square-wave audio signal as being very “bright”, relative to 
e.g. a pure-tone (sine-wave) audio signal at the same frequency, which sounds “mellow” 
or “round”, since it has only a single harmonic component - the fundamental. In fact, the 
square wave audio signal also sounds “harsh” to the human ear, because of the presence 
of all of the odd harmonics, at 3f, 5f, 7f, 9f, .... etc.  

 

     Note that harmonics at the frequencies 3f, 5f, 7f, 9f, .... etc. are not integer-multiples of 
an octave above the fundamental, at frequency,  f. A frequency that is one octave above 
the fundamental is at 2f; two octaves above, at 4f; three octaves above, at 6f, ... etc. 

 

     If the fundamental is at a frequency,  f = 440 Hz (i.e. A4 on a piano), then 3f = 1320 Hz 
(very close to E6 on a piano), which is one octave and a  fifth above the fundamental. The 
fifth harmonic is 5f = 2200 Hz (very close to C7

# on a piano), which is two octaves and a 
third above the fundamental. Together, ignoring the octaves, these two harmonics, in 
combination with the fundamental, form a major triad-type chord (in the key of A, here), 
so it isn’t that displeasing to the human ear to listen to a square wave-type of sound. 

 

    If a square wave signal, e.g. created by a function generator is output through a 
loudspeaker, converting it to sound, the human ear perceives the loudness, L of this sound 
(units of deci-Bels, abbreviated as dB) which is logarithmically proportional to the 
intensity, I ) of the sound wave (units of Watts/m2), which in turn is linearly proportional 
power, P of the sound wave (units of Watts), which in turn is proportional to the square 
of the amplitude, Ai of the square wave. Mathematically:  

 

Loudness, L   10 log10 (I / Io)     (units = deci-Bels, dB) 
 

Intensity, I  (Watts/m2)   Power, P (Watts)    {Output Response, Ro(Si(t))}2 
 

The threshold of human hearing - i.e. the faintest possible sound that is detectable as such 
by the (average) human ear is defined as Loudness, Lo  0 dB, which corresponds to a 
sound intensity, Io associated with the threshold of human hearing of Io = 1012 Watts/m2. 

 

     If the loudness of the fundamental (n = 1) is L1 = 60 dB (100 dB), this corresponds to 
an intensity associated with the fundamental tone of  I1 = 106 (102) Watts/m2, 
respectively. If the ratio of the amplitude for the nth harmonic to the amplitude of the 
fundamental associated with the square wave is |rn| / |r1|  = 1/n, for odd n = 3, 5, 7, 9, ... 
etc. Then the ratio of intensity for the nth harmonic to the intensity for the fundamental 
associated with the square wave is  In / I1 = (1/n)2, and the terms, e.g for n = 3 are: 
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log10 (In / I1) = log10 (1/n)2  =  2 log10 (1/n) = 2 log10 (0.3333) = 0.9542 

and 
log10 (I1 / Io) = 6 (10)     for     I1 = 106 (102) Watts/m2,   respectively. 

 

Thus, the human ear will perceive the loudness, Ln of the nth harmonic, relative to 
perceived loudness, L1 of the fundamental of the square wave, as heard e.g. through a 
loudspeaker as: 

 

Ln / L1 = 10 log10 (In / Io) /10 log10 (I1 / Io) = log10 (In / Io) / log10 (I1 / Io) 

= log10 [(In / I1)*( I1 / Io)] / log10 (I1 / Io) 

= [log10 (In / I1) + log10 ( I1 / Io)] / log10 (I1 / Io) 

=  {log10 (In / I1) / log10 (I1 / Io)} + 1 

= 1 +  {log10 (In / I1) / log10 (I1 / Io)} 
 

Then for the 3rd harmonic: 
 

L3 / L1 = 1  {0.9542 / 6}  (= 1  {0.9542 / 10}) 
= 84.1%              (=  90.5%) 

 

for I1 = 106 (102) Watts/m2, respectively. This is the (fractional) amount of third 
harmonic, as heard by the human ear for a square wave. This is very large! Note also that 
the ratio, Ln / L1 increases (logarithmically) with increasing amplitude of the square wave! 
For a loudness of the fundamental tone of L1 = 60 dB (100 dB), the loudness of the third 
harmonic, for |r3| / |r1|  = 1/3 = 33.3% is:  

 

L3 = 10 log10 (I3 / Io) = 10 log10 [(I3 / I1)*( I1 / Io)] 
= 10 log10 (I3 / I1) + 10 log10 ( I1 / Io) 
= 20 log10 (0.3333) + 60 dB (100 dB) 

=  9.54 dB + 60 dB (100 dB) 
= 50.46 dB (90.46 dB), respectively. 

 

     Thus, a value of the ratio of amplitudes for the third harmonic to the fundamental of 
the square wave, |r3| / |r1|  = 1/3 = 33.3% is perceived by the human ear as extremely 
“rich” in third harmonic content. The human ear is capable of detecting quite small 
harmonic overtone components, where |rn| / |r1|  ~  0.5% (or less) because these (still) 
correspond to large values of the ratio Ln / L1 ~ 25% (~ 55%), for L1 = 60 dB (100 dB), 
respectively!  
 
     The following figure shows the loudness ratios, Ln / L1 for the first twenty harmonics 
(i.e. n < 20) associated with the bipolar square wave, for loudness values of the 
fundamental of L1 = 60 dB  (~ quiet) and for L1 = 100 dB (~ quite loud). This is what the 
human ear perceives as the loudness of the harmonics relative to that of the fundamental. 
Note that the decrease in the loudness ratio, Ln / L1 with increasing harmonic #, n is quite 
slow. 
 



UIUC Physics 406 Acoustical Physics of Music 

 
 

Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, IL,  
2000 - 2017. All rights reserved. 

10 

 
 

 
     The following two figures show the “Fourier construction” of a periodic, bipolar, 50% 
duty-cycle unit-amplitude square wave. The waveforms in these figures were generated 
using truncated, finite-term version(s) of the Fourier series expansion for this waveform: 

     The first figure shows the bipolar square wave (labelled as “Waveform”) overlaid with 
three other waveforms: that associated with just the fundamental (“n = 1”), then the 
waveform associated with fundamental + 3rd harmonic (“n = 1:3”), then the waveform 
associated with fundamental + 3rd + 5th harmonic (“n = 1:5”). 
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     The second figure shows the bipolar square wave (labelled as “Waveform”) overlaid 
with three other waveforms: that associated with the fundamental through the 7th 
harmonic (“n = 1:7”), then the waveform associated with fundamental through the 9th 
harmonic (“n = 1:9”), then the waveform associated with fundamental through the 13th 
harmonic (“n = 1:13”). 

     As each of the higher harmonic terms is added in, “building” the Fourier series for the 
bipolar square wave, the agreement between each successive waveform and that of the 
actual bipolar square wave becomes better and better. As stater earlier, the higher 
harmonic terms are required to achieve good agreement in the most rapidly-changing 
portions of this waveform, as can be seen from these two figures. 

 

     In rock music, the square wave shows up on the output side of various kinds of  “fuzz”  
(i.e. distortion) effect (FX) “stomp” boxes used for altering the signal(s) from electric 
guitars, most notably used e.g. by heavy-metal bands. In many of these type of distortion 
FX boxes, the signal gain is very high. Somewhere in the FX box circuit, a non-linear 
circuit element, such as a pair of back-to-back diodes “clips” the large-amplitude signal 
from the guitar, chopping off  (i.e. limiting) the peaks, thus creating a square wave-type 
signal. Note also that the FX box also additionally acts as a signal compressor/limiter, as 
a consequence of clipping the large-amplitude input waveform. Another interesting 
aspect of the use of distortion FX boxes is that the resulting high-harmonic content sound 
wave output from the guitar amplifier can acoustically couple back to the strings of the 
electric guitar, providing the necessary energy to drive the strings into so-called “infinite-
sustain”, also known as feedback. This acoustical feedback coupling is (usually) not via 
the fundamental; it occurs primarily through the acoustical feedback coupling associated 
with the  3rd harmonic of the square wave! 

 

     Square waves also have use(s) in electronic keyboard-type instruments, as part of a 
large “pallette” of keyboard sounds. 
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C. Fourier Analysis of a Periodic, Bipolar Delta-Function 
 

     The limiting case of the duty cycle going to zero for a temporally-periodic, bipolar 
square wave of is known as a periodic, bipolar delta-function waveform, consisting of a 
series of  alternating up and down “spikes”, each of zero width, as shown in the figure 
below: 

     Such “spikes” can be represented mathematically by a so-called delta-function,  (x). 
The mathematical properties of the delta-function,  (x) are quite intriguing. The delta-
function,  (x) is located at the position of its argument, here, x = 0. Thus, e.g.  (x  xo) is 
located at x = xo, and thus  (x + xo) is located at x =  xo. (n.b. The argument, u of the 
delta-function,  (u) is always equal to zero, e.g. u = (x  xo) = 0, thus x = xo). 
 
     Formally, mathematically, the delta-function,  (x) has zero width and infinite height, 
but only at x = 0. It is zero everywhere else.  When a delta-function is used inside of an 
integral, amazing things happen as a result. For example, if the range of integration 
contains the point x = xo, then: 

otherwise both of these integrals are = 0, if x = xo is not contained within the range of 
integration. Note also that the (one-dimensional) delta-function,  (x) has dimensions (i.e. 
units) of 1/x. 

 

     Mathematically, we can define the above odd-symmetry waveform, f ( ) over the 
interval 0    < 2 (i.e. one cycle of this waveform) as: 

 

 f ( ) =  (   /2)   (   3/2)  
 

Thus, the positive-going delta-function is located at   = ¼ = /2, and the negative-
going delta-function is located at   = ¾ = 3/2. 

f( t) 

f( t) = +1 

f( t) = 1 

 t 

 t1   = 0  t2   =       
          = 2 

 (t2  t1)  
   =     
   = 2  
 

f( t) = 0 

½ 
=   

¼ 
= /2 

 ¾ 
=3/2 

1)(  dxxx o   )()()( oo xfdxxxxf 



UIUC Physics 406 Acoustical Physics of Music 

 
 

Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, IL,  
2000 - 2017. All rights reserved. 

13 

     We can then determine the Fourier coefficients, a0, the an and bn from their associated 
inner products: 

 
The Fourier coefficients, an and bn for n > 0 are: 

 
Now: 

cos (n/2) = cos (3n/2) =   0 for odd  n =  1, 3,  5,  7,  .... etc. 
However: 

cos (n/2) = cos (3n/2) = 1 for even n = 2, 6, 10, 14, .... etc. 
but: 

cos (n/2) = cos (3n/2) = +1 for even n = 4, 8, 12, 16, .... etc. 
 
Thus, for all integers, n > 0, the Fourier coefficients, an = 0. 
 
Now: 

sin (n/2) =  sin (3n/2) = +1 for odd  n = 1, 5, 9, 13, .... etc. 
but: 

sin (n/2) =  sin (3n/2) = 1 for odd  n = 3, 7,11, 15, .... etc. 
However: 

sin (n/2) =    sin (3n/2) =   0 for even n = 2, 4,  6,   8, .... etc. 
 
Thus, only the odd Fourier coefficients, bn are non-zero: 
 
For odd n = 1, 5, 9, 13, .... etc.,  bn = 2/. For odd n = 3, 7,11, 15, .... etc., bn =  2/. 
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Thus, the Fourier series expansion for a periodic, bipolar, delta-function wave as shown 
in the above figure is given by: 

Using the replacement: nodd = 2 m 1, m = 1, 2, 3, 4, ....... in the above summation, we 
can alternatively write the Fourier series expansion for this delta-function wave as: 

 
     Note that the magnitudes of the non-zero amplitudes of the harmonics,  |rn| = |bn| = 
2/, as shown in the figure below for the first 20 harmonics. 
 

 
Note that the |rn| have no n-dependence - i.e. they are independent of frequency! Thus for 
a bipolar delta-function waveform, all odd harmonics contribute equally in magnitude to 
creating this waveform!  
 
     However, because the sign of the bn changes with successive odd integer, n, this also 
means that the phase angle, n changes sign with successive odd integer, n. For odd n = 1, 
5, 9, 13, .... etc., where bn = +2/ and an = 0, then n =  tan1 (bn / an) = tan1 ()  = ½  = 
90o . For odd n = 3, 7, 11, 15, .... etc., where bn = 2/ and an = 0, then n =  tan1 (bn / an) 
= tan1 ()  = ½  = 90o. Thus, the non-zero, successive odd-n phase angles, n of the 
harmonics are 180o degrees apart - i.e. successive harmonics tend to cancel against each 
other, except in the regions   ~ /2 and   ~ 3/2! 
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     The following two figures show the “Fourier construction” of a periodic, bipolar, 50% 
duty-cycle unit-amplitude delta-function wave. The waveforms in these figures were 
generated using truncated, finite-term version(s) of the Fourier series expansion for this 
waveform: 

 
     The first figure shows the bipolar delta-function wave (labelled as “Waveform”) 
overlaid with three other waveforms: that associated with just the fundamental (“n = 1”), 
then the waveform associated with fundamental + 3rd harmonic (“n = 1:3”), then the 
waveform associated with fundamental + 3rd + 5th harmonic (“n = 1:5”). 
 

 
 
     The second figure shows the bipolar delta-function wave (labelled as “Waveform”) 
overlaid with three other waveforms: that associated with the fundamental through the 7th 
harmonic (“n = 1:7”), then the waveform associated with fundamental through the 9th 
harmonic (“n = 1:9”), then the waveform associated with fundamental through the 13th 
harmonic (“n = 1:13”). 
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     It can be seen that the higher-order harmonics are much needed for decreasing the 
width of the “pulse” at each delta-function location. The width of each pulse slowly 
decreases as the number of harmonics included in the “Fourier construction” of the 
bipolar delta function increases. Only in the limit of using an infinite number of 
harmonics does the width of each delta-function “pulse” formally become zero. 
 

     The periodic, bipolar delta-function waveform is the “0% duty-cycle” limiting case of 
the periodic, bipolar 50% duty-cycle square wave. While the harmonic content of the 
50% duty-cycle bipolar square wave is already extremely rich in odd harmonics, with 
harmonic amplitudes that decrease slowly, as 1/n of the harmonic #, n, the “0% duty-
cycle” delta-function waveform is the extreme in harmonic content, since all harmonics 
have the same amplitude. For bipolar square waves with duty-cycle (DC) between  
0% < DC < 50%, the decrease in harmonic content with increasing harmonic # is less 
steep than 1/n, becoming flatter with increasing harmonic # as the duty cycle decreases 
from 50%, to the limiting case for DC = 0%, when the harmonic content with increasing 
harmonic # is perfectly flat. 
 

     If the duty-cycle of the periodic, bipolar square wave increases beyond 50%, then the 
only way this can occur is if the waveform develops a d.c. offset. Thus, the Fourier series 
for such waveforms develops a non-zero value of a0 (i.e. |r0|) for DC > 50%. For the 
limiting case of a bipolar, unit-amplitude square wave with duty factor, DC = 100%, then 
the time average of this waveform, < f ( ) > = 1 = a0 / 2, thus a0 = 2 here. Note that this 
100% duty-cycle waveform is also a periodic, but unipolar (i.e. single) delta-function 
waveform, for each cycle of the waveform. The 100% duty cycle, unit-amplitude 
periodic waveform can thus be thought of as a superposition (i.e. linear combination) of a 
d.c. offset (of  strength a0 = 2) with a periodic, unipolar delta-function waveform. Thus, 
this waveform will also have a perfectly flat harmonic spectrum, neglecting the zero-
frequency d.c. offset term. 
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Exercises: 
 
1. Compute the Fourier coefficients, a0,  an and bn for the “flipped” bipolar, 50% duty-

cycle square wave, in the time domain: 
f ( ) = f ( t) =  1   for   0   <   

 f ( ) = f ( t) = + 1   for      < 2 
Compare these Fourier coefficients with those obtained above for the “unflipped” 
bipolar, 50% duty-cycle square wave. 

 
2. Compute the Fourier coefficients, a0,  an and bn for the “shifted” bipolar, 50% duty-

cycle square wave, in the time domain: 
f ( ) = f ( t) =  1   for     0     <  /2 
 f ( ) = f ( t) = + 1   for   /2   < 3/2 
 f ( ) = f ( t) =  1   for   3/2   < 2 

Compare these Fourier coefficients with those obtained above for the “unflipped” and 
“flipped” bipolar, 50% duty-cycle square waves. 
 

3. Compute the Fourier coefficients, a0,  an and bn for the unipolar, 25% duty-cycle 
square wave, in the time domain: 

f ( ) = f ( t) =     0   for   0   <  /2 
 f ( ) = f ( t) = + 1   for  /2   < 2 

Compare these Fourier coefficients with those obtained above for the “unflipped” 
bipolar, 50% duty-cycle square wave. 
 

4. Compute the Fourier coefficients, a0,  an and bn for the unipolar delta-function 
waveform, in the time domain: 

f ( ) = f ( t) =   (   ) 
Compare these Fourier coefficients with those obtained above for the bipolar 
delta-function waveform. 
 

5. For each of the above exercises, use e.g. MathLab, or a spreadsheet program, such as 
Excel to make plots of the harmonic amplitudes, |rn|, the loudness ratios, Ln / L1 and 
Fourier contruction of the original waveform, for e.g. the first few harmonics. 

 
References for Fourier Analysis and Further Reading: 
 
1. Fourier Series and Boundary Value Problems, 2nd Edition, Ruel V. Churchill, 

McGraw-Hill Book Company, 1969. 
 
2. Mathematics of  Classical and Quantum Physics, Volumes 1 & 2, Frederick W. 

Byron, Jr. and Robert W. Fuller, Addison-Wesley Publishing Company, 1969. 
 
3. Mathematical Methods of Physics, 2nd Edition, Jon Matthews and R.L. Walker,  

W.A. Benjamin, Inc., 1964. 
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