Skip to main content

ATPase

Encyclopedia of Astrobiology
  • 227 Accesses

Synonyms

Adenosine 5′-triphosphatase; Adenosine triphosphatase; ATP phosphohydrolase

Definition

Enzymatic activity that catalyzes the decomposition of adenosine triphosphate (ATP) into adenosine diphosphate (ADP) and phosphate (Pi). A protein with ATPase activity.

Overview

The term ATPase applies to the activity of any enzyme’s ability to decompose ATP, including metabolic enzymes involved in anabolic processes that need energy, as well as enzymes promoting transport across membrane. In the former case, the enzyme decomposes ATP using the energy liberated to do work; for instance, enzymes such as DNA helicases, RecA protein, AAA proteins, or the muscle contraction protein myosin hydrolyze ATP, applying the liberated free energy directly to their functions. In other cases, i.e., glutamine synthetase, decomposition of ATP is performed in two steps, helping to perform chemical work, phosphorylating a substrate or enzyme in a first step, and releasing the Pi in a second step. Sometimes...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

  • Abrahams JP, Leslie AG, Lutter R, Walker JE (1994) Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370:621–628

    Article  ADS  Google Scholar 

  • Boyer PD, Cross RL, Momsen W (1973) A new concept for energy coupling in oxidative phosphorylation based on a molecular explanation of the oxygen exchange reactions. Proc Natl Acad Sci U S A 70:2837–2839

    Article  ADS  Google Scholar 

  • Buch-Pedersen MJ, Pedersen BP, Veierskov B, Nissen P, Palmgren MG (2009) Protons and how they are transported by proton pumps. Eur J Physiol 457:573–579

    Article  Google Scholar 

  • Grüber G, Marshansky V (2008) New insights into structure-function relationships between archeal ATP synthase (A1A0) and vacuolar type ATPase (V1V0). Bioessays 30:1096–1109

    Article  Google Scholar 

  • Itoh H, Takahashi A, Adachi K, Noji H, Yasuda R, Yoshida M, Kinosita K Jr (2004) Mechanically driven ATP synthesis by F1-ATPase. Nature 427:465–468

    Article  ADS  Google Scholar 

  • Jefferies KC, Cipriano DJ, Forgac M (2008) Function, structure and regulation of the vacuolar (H+)-ATPases. Arch Biochem Biophys 476:33–42

    Article  Google Scholar 

  • Kayalar C, Rosing J, Boyer PD (1977) An alternating site sequence for oxidative phosphorylation suggested by measurement of substrate binding patterns and exchange reaction inhibitions. J Biol Chem 252:2486–2491

    Google Scholar 

  • Krah A, Pogoryelov D, Meier T, Faraldo-Gómez JD (2010) On the structure of the proton-binding site in the Fo rotor of chloroplast ATP synthases. J Mol Biol 395:20–27

    Article  Google Scholar 

  • Kühlbrandt W (2004) Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell Biol 5:282–295

    Article  Google Scholar 

  • Locher KP (2009) Structure and mechanism of ATP-binding cassette transporters. Philos Trans R Soc B 364:239–245

    Article  Google Scholar 

  • Madigan MT, Martinko JM, Dunlap PV, Clark DP (2008) Brock biology of microorganisms, 12th edn. Benjamin Cumming, San Francisco

    Google Scholar 

  • Mulkidjanian AY, Makarova KS, Galperin MY, Koonin EV (2007) Inventing the dynamo machine: the evolution of the F-type and V-type ATPases. Nat Rev Microbiol 5:892–899

    Article  Google Scholar 

  • Mulkidjanian AY, Galperin MY, Makarova KS, Wolf YI, Koonin EV (2008) Evolutionary primacy of sodium bioenergetics. Biol Direct 3:13

    Article  Google Scholar 

  • Mulkidjanian AY, Galperin MY, Koonin EV (2009) Co-evolution of primordial membranes and membrane proteins. Trends Biochem Sci 34:206–215

    Article  Google Scholar 

  • Nelson DL, Cox MM (2009) Lehninger principles of biochemistry, 5th edn. WH Freeman, New York

    Book  Google Scholar 

  • Noji H, Yasuda R, Yoshida M, Kinosita K Jr (1997) Direct observation of the rotation of F1-ATPase. Nature 386:299–302

    Article  ADS  Google Scholar 

  • Pedersen PL (2007) Transport ATPases into the year 2008: a brief overview related to types, structures, functions and roles in health and disease. J Bioenerg Biomembr 39:349–355

    Article  Google Scholar 

  • Pogoryelov D, Yildiz Ö, Faraldo-Gómez JD, Meier T (2009) High-resolution structure of the rotor ring of a proton-dependent ATP synthase. Nat Struct Mol Biol 16:1068–1073

    Article  Google Scholar 

  • Rees DC, Johnson E, Lewinson O (2009) ABC transporters: the power to change. Nat Rev Mol Cell Biol 10:218–227

    Article  Google Scholar 

  • Saroussi S, Nelson N (2009) Vacuolar H + -ATPase an enzyme for all seasons. Eur J Physiol 457:581–587

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Pascual Abad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Abad, J.P. (2014). ATPase. In: Amils, R., et al. Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27833-4_135-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27833-4_135-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27833-4

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    ATPase
    Published:
    06 January 2022

    DOI: https://doi.org/10.1007/978-3-642-27833-4_135-3

  2. Original

    ATPase
    Published:
    29 April 2015

    DOI: https://doi.org/10.1007/978-3-642-27833-4_135-2