Skip to main content

Introduction to Recombinant Protein Purification

  • Chapter
  • First Online:
Textbook on Cloning, Expression and Purification of Recombinant Proteins
  • 2406 Accesses

Abstract

Purified form of recombinant proteins is a prerequisite for undertaking in vitro biochemical and structural analyses of these macromolecules. Unfortunately, due to other proteins from the expression host, such as E. coli, the task of obtaining the desired protein from the heterologous system at highest purity and in sufficient quantity is arduous. With the increasing demand for recombinantly purified proteins both in basic and industrial research, over the last five decades, a plethora of research endeavors have been directed toward developing efficient protein purification techniques that would precisely amalgamate time and yield cost-effectively. However, it is extremely important to put careful forethought prior to developing a purification flow-scheme for a target protein to obtain the best possible output. This chapter outlines the general considerations to be undertaken while designing and streamlining these protocols with the help of recent advances in protein purification methodologies. It also provides an overview of the various chromatographic techniques that will be further elaborated in the succeeding chapters of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sumner JB. The isolation and crystallization of the enzyme urease preliminary paper. J Biol Chem. 1926;69:435–41.

    Article  CAS  Google Scholar 

  2. Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol. 2014;5:172.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Structural Genomics, C., C. China Structural Genomics, C. Northeast Structural Genomics, Graslund S, Nordlund P, Weigelt J, Hallberg BM, Bray J, Gileadi O, Knapp S, Oppermann U, Arrowsmith C, Hui R, Ming J, dhe-Paganon S, Park HW, Savchenko A, Yee A, Edwards A, Vincentelli R, Cambillau C, Kim R, Kim SH, Rao Z, Shi Y, Terwilliger TC, Kim CY, Hung LW, Waldo GS, Peleg Y, Albeck S, Unger T, Dym O, Prilusky J, Sussman JL, Stevens RC, Lesley SA, Wilson IA, Joachimiak A, Collart F, Dementieva I, Donnelly MI, Eschenfeldt WH, Kim Y, Stols L, Wu R, Zhou M, Burley SK, Emtage JS, Sauder JM, Thompson D, Bain K, Luz J, Gheyi T, Zhang F, Atwell S, Almo SC, Bonanno JB, Fiser A, Swaminathan S, Studier FW, Chance MR, Sali A, Acton TB, Xiao R, Zhao L, Ma LC, Hunt JF, Tong L, Cunningham K, Inouye M, Anderson S, Janjua H, Shastry R, Ho CK, Wang D, Wang H, Jiang M, Montelione GT, Stuart DI, Owens RJ, Daenke S, Schutz A, Heinemann U, Yokoyama S, Bussow K, Gunsalus KC. Protein production and purification. Nat Methods. 2008;5:135–46.

    Article  Google Scholar 

  4. Arnau J, Lauritzen C, Petersen GE, Pedersen J. Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expr Purif. 2006;48:1–13.

    Article  CAS  PubMed  Google Scholar 

  5. Tripathi NK, Shrivastava A. Recent developments in bioprocessing of recombinant proteins: expression hosts and process development. Front Bioeng Biotechnol. 2019;7:420.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wingfield PT. Overview of the purification of recombinant proteins. Curr Protoc Protein Sci. 2015;80:6.1.1–6.1.35.

    Article  Google Scholar 

  7. Rath A, Glibowicka M, Nadeau VG, Chen G, Deber CM. Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc Natl Acad Sci U S A. 2009;106:1760–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cole JL, Lary JW, Moody TP, Laue TM. Analytical ultracentrifugation: sedimentation velocity and sedimentation equilibrium. Methods Cell Biol. 2008;84:143–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Park ES, Wallace WE, Guttman CM, Flynn KM, Richardson MC, Holmes GA. A general method for quantitative measurement of molecular mass distribution by mass spectrometry. J Am Soc Mass Spectrom. 2009;20:1638–44.

    Article  CAS  PubMed  Google Scholar 

  10. Hong P, Koza S, Bouvier ES. Size-exclusion chromatography for the analysis of protein biotherapeutics and their aggregates. J Liq Chromatogr Relat Technol. 2012;35:2923–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Audain E, Ramos Y, Hermjakob H, Flower DR, Perez-Riverol Y. Accurate estimation of isoelectric point of protein and peptide based on amino acid sequences. Bioinformatics. 2016;32:821–7.

    Article  CAS  PubMed  Google Scholar 

  12. Ahamed T, Chilamkurthi S, Nfor BK, Verhaert PD, van Dedem GW, van der Wielen LA, Eppink MH, van de Sandt EJ, Ottens M. Selection of pH-related parameters in ion-exchange chromatography using pH-gradient operations. J Chromatogr A. 2008;1194:22–9.

    Article  CAS  PubMed  Google Scholar 

  13. Shaw KL, Grimsley GR, Yakovlev GI, Makarov AA, Pace CN. The effect of net charge on the solubility, activity, and stability of ribonuclease Sa. Protein Sci. 2001;10:1206–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Saraswat M, Musante L, Ravida A, Shortt B, Byrne B, Holthofer H. Preparative purification of recombinant proteins: current status and future trends. Biomed Res Int. 2013;2013:312709.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lakowicz JR. Principles of fluorescence spectroscopy. Switzerland: Springer Science & Business Media; 2013.

    Google Scholar 

  16. Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A. Protein identification and analysis tools on the ExPASy server. In: The proteomics protocols handbook. New York: Springer; 2005. p. 571–607.

    Chapter  Google Scholar 

  17. Gill SC, Von Hippel PH. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989;182:319–26.

    Article  CAS  PubMed  Google Scholar 

  18. Guruprasad K, Reddy BB, Pandit MW. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng Des Sel. 1990a;4:155–61.

    Article  CAS  Google Scholar 

  19. Varshavsky A. The N-end rule pathway of protein degradation. Genes Cells. 1997;2:13–28.

    Article  CAS  PubMed  Google Scholar 

  20. Mogk A, Schmidt R, Bukau B. The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol. 2007;17:165–72.

    Article  CAS  PubMed  Google Scholar 

  21. Guruprasad K, Reddy BV, Pandit MW. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng. 1990b;4:155–61.

    Article  CAS  PubMed  Google Scholar 

  22. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157:105–32.

    Article  CAS  PubMed  Google Scholar 

  23. Waegeman H, Soetaert W. Increasing recombinant protein production in Escherichia coli through metabolic and genetic engineering. J Ind Microbiol Biotechnol. 2011;38:1891–910.

    Article  CAS  PubMed  Google Scholar 

  24. Vieira Gomes AM, Souza Carmo T, Silva Carvalho L, Mendonca Bahia F, Parachin NS. Comparison of yeasts as hosts for recombinant protein production. Microorganisms. 2018;6

    Google Scholar 

  25. Wurm DJ, Slouka C, Bosilj T, Herwig C, Spadiut O. How to trigger periplasmic release in recombinant Escherichia coli: a comparative analysis. Eng Life Sci. 2017;17:215–22.

    Article  CAS  PubMed  Google Scholar 

  26. Brady PN, Macnaughtan MA. Evaluation of colorimetric assays for analyzing reductively methylated proteins: biases and mechanistic insights. Anal Biochem. 2015;491:43–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Seddon AM, Curnow P, Booth PJ. Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta. 2004;1666:105–17.

    Article  CAS  PubMed  Google Scholar 

  28. Ersson B, Rydén L, Janson JCJPPP. High resolution methods, and applications. In: Introduction to protein purification. Hoboken, NJ: John Wiley & Sons, Inc.; 2011. p. 1–22.

    Google Scholar 

  29. Otzen DE. Protein unfolding in detergents: effect of micelle structure, ionic strength, pH, and temperature. Biophys J. 2002;83:2219–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Singh A, Upadhyay V, Upadhyay AK, Singh SM, Panda AK. Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb Cell Factories. 2015;14:41.

    Article  Google Scholar 

  31. Poole LB. The basics of thiols and cysteines in redox biology and chemistry. Free Radic Biol Med. 2015;80:148–57.

    Article  CAS  PubMed  Google Scholar 

  32. Lebendiker M, Maes M, Friedler A. A screening methodology for purifying proteins with aggregation problems. Methods Mol Biol. 2015;1258:261–81.

    Article  CAS  PubMed  Google Scholar 

  33. Trivedi MV, Laurence JS, Siahaan TJ. The role of thiols and disulfides on protein stability. Curr Protein Pept Sci. 2009;10:614–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Middelberg AP. Preparative protein refolding. Trends Biotechnol. 2002;20:437–43.

    Article  CAS  PubMed  Google Scholar 

  35. Singh S, Singh J. Effect of polyols on the conformational stability and biological activity of a model protein lysozyme. AAPS PharmSciTech. 2003;4:E42.

    Article  PubMed  Google Scholar 

  36. Lin MZ, Tsien RY. TimeSTAMP tagging of newly synthesized proteins. Curr Protoc Protein Sci. Chapter 26. 2010;Unit 26:25.

    Google Scholar 

  37. Wingfield PT. Preparation of soluble proteins from Escherichia coli. Curr Protoc Protein Sci. 2014;78:6.2.1–6.2.22.

    Google Scholar 

  38. Cvjetkovic A, Lotvall J, Lasser C. The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. J Extracell Vesicles. 2014;3

    Google Scholar 

  39. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. Hierarchical structure of proteins. In: Molecular cell biology. 4th ed. Bethesda, MD: WH Freeman; 2000.

    Google Scholar 

  40. Wingfield P. Protein precipitation using ammonium sulfate. Curr Protoc Protein Sci. 2001;Appendix 3:Appendix 3F.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hyde AM, Zultanski SL, Waldman JH, Zhong Y-L, Shevlin M, Peng F. General principles and strategies for salting-out informed by the hofmeister series. Org Process Res Dev. 2017;21:1355–70.

    Article  CAS  Google Scholar 

  42. Damodaran S. Amino acids, peptides and proteins. Boca Raton, FL: CRC Press; 2008.

    Google Scholar 

  43. Mattos C. Protein–water interactions in a dynamic world. Trends Biochem Sci. 2002;27:203–8.

    Article  CAS  PubMed  Google Scholar 

  44. Kramer RM, Shende VR, Motl N, Pace CN, Scholtz JM. Toward a molecular understanding of protein solubility: increased negative surface charge correlates with increased solubility. Biophys J. 2012;102:1907–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Carrio MM, Villaverde A. Localization of chaperones DnaK and GroEL in bacterial inclusion bodies. J Bacteriol. 2005;187:3599–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yamaguchi H, Miyazaki M. Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies. Biomol Ther. 2014;4:235–51.

    Google Scholar 

  47. Willis MS, Hogan JK, Prabhakar P, Liu X, Tsai K, Wei Y, Fox T. Investigation of protein refolding using a fractional factorial screen: a study of reagent effects and interactions. Protein Sci. 2005;14:1818–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Coskun O. Separation techniques: chromatography. North Clin Istanb. 2016;3:156–60.

    PubMed  PubMed Central  Google Scholar 

  49. Bornhorst JA, Falke JJ. Purification of proteins using polyhistidine affinity tags. Methods Enzymol. 2000;326:245–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Porath J. Immobilized metal ion affinity chromatography. Protein Expr Purif. 1992;3:263–81.

    Article  CAS  PubMed  Google Scholar 

  51. Mahmoodi S, Pourhassan-Moghaddam M, Wood DW, Majdi H, Zarghami NJCB. Current affinity approaches for purification of recombinant proteins. Cogent Biol. 2019;5(1):1665406.

    Article  CAS  Google Scholar 

  52. Jungbauer A, Hahn R. Ion-exchange chromatography. In: Methods in enzymology, vol. 463. Netherland: Elsevier; 2009. p. 349–71.

    Google Scholar 

  53. Hedhammar M, Karlström AE, Hober SJS. Chromatographic methods for protein purification. Seattle, WA: Semantic Scholar; 2006. p. 1–31.

    Google Scholar 

  54. Mori S, Barth HG. Size exclusion chromatography. Singapore: Springer Science & Business Media; 2013.

    Google Scholar 

  55. Sun T, Chance RR, Graessley WW, Lohse DJ. A study of the separation principle in size exclusion chromatography. Macromolecules. 2004;37:4304–12.

    Article  CAS  Google Scholar 

  56. Fekete S, Beck A, Veuthey J-L, Guillarme D. Theory and practice of size exclusion chromatography for the analysis of protein aggregates. J Pharm Biomed Anal. 2014;101:161–73.

    Article  CAS  PubMed  Google Scholar 

  57. Burgess RR. A brief practical review of size exclusion chromatography: rules of thumb, limitations, and troubleshooting. Protein Expr Purif. 2018;150:81–5.

    Article  CAS  PubMed  Google Scholar 

  58. Afeyan N, Gordon N, Mazsaroff I, Varady L, Fulton S, Yang Y, Regnier FJ. Flow-through particles for the high-performance liquid chromatographic separation of biomolecules: perfusion chromatography. J Chromatogr A. 1990;519:1–29.

    Article  CAS  Google Scholar 

  59. Granath KA, Kvist BE. Molecular weight distribution analysis by gel chromatography on sephadex. J Chromatogr A. 1967;28:69–81.

    Article  CAS  Google Scholar 

  60. Striegel A, Yau WW, Kirkland JJ, Bly DD. Modern size-exclusion liquid chromatography: practice of gel permeation and gel filtration chromatography. Hoboken, NJ: John Wiley & Sons; 2009.

    Book  Google Scholar 

  61. Erickson HP. Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol Proced Online. 2009;11:32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

NS gratefully acknowledges financial support from the DBT-RA Program in Biotechnology and Life Sciences for completion of the manuscript. The authors acknowledge Ms. Chanda Baisane, Bose Lab, ACTREC for formatting the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kakoli Bose .

Editor information

Editors and Affiliations

Problems

Problems

Multiple Choice Questions

  1. 1.

    Protein purification techniques are based on the following properties except:

    1. (a)

      Solubility of the protein

    2. (b)

      Charge on the protein

    3. (c)

      Viscosity of the protein

    4. (d)

      Specific binding affinity of the protein

  2. 2.

    Salting-out refers to

    1. (a)

      Precipitation of proteins using ammonium sulfate

    2. (b)

      Precipitation of proteins using copper sulfate

    3. (c)

      Precipitation of proteins using sodium chloride

    4. (d)

      Both (a) and (c)

  3. 3.

    You find that your protein sample shows lots of additional bands of lower molecular weight apart from the desired protein. What can you do about this?

    1. (a)

      Add an additional purification step

    2. (b)

      Use a protease inhibitor during lysis and purification

    3. (c)

      Perform each step as quickly as possible, in a cold-room

    4. (d)

      All of the above

Subjective Questions

  1. 1.

    To estimate the molecular mass of an unknown protein, you decide to run a size exclusion chromatography. Next, you run a series of proteins with the known molecular mass and the unknown protein on a Sephadex G-200 column. Below are the elution volumes (Ve) for each protein. The measured void volume (V0) of the column is 36 mL. Using these values, calculate the molecular mass of the unknown protein.

    Table 5
  1. 2.

    To separate a mixture of proteins with different pI values, you try anion exchange chromatography using DEAE-cellulose column. For this, you first equilibrate your column with phosphate buffer, pH 6.5. Then you pass the following mixture of proteins, AS (pI – 4.6), BS (pI – 5.0), and CS (pI – 7.0). The proteins are eluted first with weak ionic strength buffer (50 mM NaCl, pH 6.5) and then in the same buffer but with increasing NaCl concentration. Explain what order will the proteins elute?

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, N., Bose, K. (2022). Introduction to Recombinant Protein Purification. In: Bose, K. (eds) Textbook on Cloning, Expression and Purification of Recombinant Proteins. Springer, Singapore. https://doi.org/10.1007/978-981-16-4987-5_5

Download citation

Publish with us

Policies and ethics