23.10.2013 Views

Predicting the water-use of Eucalyptus nitens plantations in ...

Predicting the water-use of Eucalyptus nitens plantations in ...

Predicting the water-use of Eucalyptus nitens plantations in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

RESOURCES<br />

PROJECT NUMBER: PNC143.0809 SEPTEMBER 2011<br />

<strong>Predict<strong>in</strong>g</strong> <strong>the</strong> <strong>water</strong>-<strong>use</strong> <strong>of</strong><br />

<strong>Eucalyptus</strong> <strong>nitens</strong><br />

<strong>plantations</strong> <strong>in</strong> Tasmania<br />

us<strong>in</strong>g a Forest Estate Model<br />

This report can also be viewed on <strong>the</strong> FWPA website<br />

www.fwpa.com.au<br />

FWPA Level 4, 10-16 Queen Street,<br />

Melbourne VIC 3000, Australia<br />

T +61 (0)3 9927 3200 F +61 (0)3 9927 3288<br />

E <strong>in</strong>fo@fwpa.com.au W www.fwpa.com.au


<strong>Predict<strong>in</strong>g</strong> <strong>the</strong> <strong>water</strong>-<strong>use</strong> <strong>of</strong> <strong>Eucalyptus</strong> <strong>nitens</strong><br />

<strong>plantations</strong> <strong>in</strong> Tasmania us<strong>in</strong>g a Forest Estate<br />

Model<br />

Prepared for<br />

Forest & Wood Products Australia<br />

by<br />

Sandra Roberts, Steve Read, Mike McLar<strong>in</strong>, Paul Adams


Publication: <strong>Predict<strong>in</strong>g</strong> <strong>the</strong> <strong>water</strong>-<strong>use</strong> <strong>of</strong> <strong>Eucalyptus</strong> <strong>nitens</strong><br />

<strong>plantations</strong> <strong>in</strong> Tasmania us<strong>in</strong>g a Forest Estate Model<br />

Project No: PNC143-0809<br />

This work is supported by fund<strong>in</strong>g provided to FWPA by <strong>the</strong> Australian Government Department <strong>of</strong><br />

Agriculture, Fisheries and Forestry (DAFF).<br />

© 2012 Forest & Wood Products Australia Limited. All rights reserved.<br />

Whilst all care has been taken to ensure <strong>the</strong> accuracy <strong>of</strong> <strong>the</strong> <strong>in</strong>formation conta<strong>in</strong>ed <strong>in</strong> this publication,<br />

Forest and Wood Products Australia Limited and all persons associated with <strong>the</strong>m (FWPA) as well as<br />

any o<strong>the</strong>r contributors make no representations or give any warranty regard<strong>in</strong>g <strong>the</strong> <strong>use</strong>, suitability,<br />

validity, accuracy, completeness, currency or reliability <strong>of</strong> <strong>the</strong> <strong>in</strong>formation, <strong>in</strong>clud<strong>in</strong>g any op<strong>in</strong>ion or<br />

advice, conta<strong>in</strong>ed <strong>in</strong> this publication. To <strong>the</strong> maximum extent permitted by law, FWPA disclaims all<br />

warranties <strong>of</strong> any k<strong>in</strong>d, whe<strong>the</strong>r express or implied, <strong>in</strong>clud<strong>in</strong>g but not limited to any warranty that <strong>the</strong><br />

<strong>in</strong>formation is up-to-date, complete, true, legally compliant, accurate, non-mislead<strong>in</strong>g or suitable.<br />

To <strong>the</strong> maximum extent permitted by law, FWPA excludes all liability <strong>in</strong> contract, tort (<strong>in</strong>clud<strong>in</strong>g<br />

negligence), or o<strong>the</strong>rwise for any <strong>in</strong>jury, loss or damage whatsoever (whe<strong>the</strong>r direct, <strong>in</strong>direct, special<br />

or consequential) aris<strong>in</strong>g out <strong>of</strong> or <strong>in</strong> connection with <strong>use</strong> or reliance on this publication (and any<br />

<strong>in</strong>formation, op<strong>in</strong>ions or advice <strong>the</strong>re<strong>in</strong>) and whe<strong>the</strong>r ca<strong>use</strong>d by any errors, defects, omissions or<br />

misrepresentations <strong>in</strong> this publication. Individual requirements may vary from those discussed <strong>in</strong> this<br />

publication and you are advised to check with State authorities to ensure build<strong>in</strong>g compliance as well<br />

as make your own pr<strong>of</strong>essional assessment <strong>of</strong> <strong>the</strong> relevant applicable laws and Standards.<br />

The work is copyright and protected under <strong>the</strong> terms <strong>of</strong> <strong>the</strong> Copyright Act 1968 (Cwth). All material<br />

may be reproduced <strong>in</strong> whole or <strong>in</strong> part, provided that it is not sold or <strong>use</strong>d for commercial benefit and<br />

its source (Forest & Wood Products Australia Limited) is acknowledged and <strong>the</strong> above disclaimer is<br />

<strong>in</strong>cluded. Reproduction or copy<strong>in</strong>g for o<strong>the</strong>r purposes, which is strictly reserved only for <strong>the</strong> owner or<br />

licensee <strong>of</strong> copyright under <strong>the</strong> Copyright Act, is prohibited without <strong>the</strong> prior written consent <strong>of</strong> FWPA.<br />

ISBN: 978-1-921763-56-4<br />

Researcher:<br />

Sandra Roberts, Steve Read, Mike McLar<strong>in</strong>, Paul Adams<br />

Forestry Tasmania<br />

79 Melville St<br />

Hobart, Tasmania, 7000<br />

Forest & Wood Products Australia Limited<br />

Level 4, 10-16 Queen St, Melbourne, Victoria, 3000<br />

T +61 3 9927 3200 F +61 3 9927 3288<br />

E <strong>in</strong>fo@fwpa.com.au<br />

W www.fwpa.com.au


Executive Summary<br />

The objective <strong>of</strong> this project was to <strong>use</strong> a forest estate model to predict <strong>the</strong> annual <strong>water</strong>-<strong>use</strong><br />

<strong>of</strong> <strong>Eucalyptus</strong> <strong>nitens</strong> <strong>plantations</strong>. This report describes measurements <strong>of</strong> <strong>water</strong>-<strong>use</strong> made <strong>in</strong><br />

E. <strong>nitens</strong> <strong>plantations</strong> <strong>in</strong> Tasmania, <strong>the</strong> development <strong>of</strong> a model to predict <strong>water</strong>-<strong>use</strong> <strong>of</strong> E.<br />

<strong>nitens</strong> <strong>plantations</strong> and <strong>in</strong>corporation <strong>of</strong> this model <strong>in</strong> an estate model.<br />

An estate model that <strong>in</strong>cludes predicted <strong>water</strong>-<strong>use</strong> will enable forest managers to<br />

simultaneously assess <strong>the</strong> impacts <strong>of</strong> plantation management decisions on wood production,<br />

<strong>in</strong>come and <strong>water</strong>-<strong>use</strong>. This capacity will be <strong>use</strong>ful <strong>in</strong> limit<strong>in</strong>g <strong>the</strong> impacts <strong>of</strong> plantation<br />

management on o<strong>the</strong>r <strong>water</strong>-<strong>use</strong>rs, ecosystems or threatened species, while maximis<strong>in</strong>g wood<br />

production and pr<strong>of</strong>its.<br />

Water-<strong>use</strong> was measured <strong>in</strong> 5 E. <strong>nitens</strong> <strong>plantations</strong> <strong>in</strong> <strong>the</strong> Florent<strong>in</strong>e Valley, Tasmania from<br />

2008 to 2010, and <strong>in</strong> 1 plantation at Forestier dur<strong>in</strong>g 2011. Plantations <strong>in</strong> <strong>the</strong> Florent<strong>in</strong>e<br />

Valley were aged 9, 7, 4 and


A simple empirical model (below) was developed from <strong>the</strong> Florent<strong>in</strong>e field data to predict<br />

annual <strong>water</strong>-<strong>use</strong> <strong>of</strong> E. <strong>nitens</strong> us<strong>in</strong>g plot basal area and annual ra<strong>in</strong>fall. The adjusted Rsquared<br />

statistic <strong>in</strong>dicates that <strong>the</strong> model expla<strong>in</strong>s 79% <strong>of</strong> <strong>the</strong> variability <strong>in</strong> <strong>water</strong>-<strong>use</strong>.<br />

Water-<strong>use</strong> (mm/yr) = 149 + 11.0*Basal Area (m 2 /ha) +0.361*Ra<strong>in</strong>fall (mm/yr)<br />

The <strong>water</strong>-<strong>use</strong> measured at Forestier (792 mm), where ra<strong>in</strong>fall was 854 mm and basal area<br />

was 30.2 m 2 /ha, fell with<strong>in</strong> <strong>the</strong> 95% prediction <strong>in</strong>terval (607 to 974 mm) for <strong>the</strong> model<br />

(above). The model predicted Forestier <strong>water</strong>-<strong>use</strong> <strong>of</strong> 790 mm, which provides some<br />

confidence that <strong>the</strong> Florent<strong>in</strong>e model can be <strong>use</strong>d at this location, and may be applicable for<br />

<strong>use</strong> elsewhere <strong>in</strong> Tasmania.<br />

The empirical model was successfully <strong>in</strong>cluded <strong>in</strong> Forestry Tasmania’s Forest Estate Model<br />

(FEM). The FEM was <strong>use</strong>d to generate estimates <strong>of</strong> <strong>water</strong>-<strong>use</strong>, <strong>the</strong> wood volume available to<br />

cut, and stand<strong>in</strong>g basal area for 1532 ha <strong>of</strong> E. <strong>nitens</strong> plantation <strong>in</strong> <strong>the</strong> Florent<strong>in</strong>e Valley over a<br />

90 year period. The FEM showed that manag<strong>in</strong>g <strong>plantations</strong> to produce smooth <strong>water</strong>-<strong>use</strong><br />

and smooth wood production is compatible – manag<strong>in</strong>g for one produces <strong>the</strong> o<strong>the</strong>r. This<br />

lends fur<strong>the</strong>r support to <strong>the</strong> concept <strong>of</strong> a regulated forest m<strong>in</strong>imis<strong>in</strong>g changes to hydrological<br />

systems (Hennes et al., 1971).<br />

The methods <strong>use</strong>d to measure <strong>water</strong>-<strong>use</strong> and build <strong>the</strong> empirical <strong>water</strong>-<strong>use</strong> model are readily<br />

transferable to o<strong>the</strong>r plantation species and native forests. Managers <strong>of</strong> o<strong>the</strong>r plantation and<br />

forest types typically have FEMs and it is likely that with <strong>the</strong> collection <strong>of</strong> some additional<br />

data and <strong>use</strong> <strong>of</strong> process models that <strong>the</strong>y could <strong>use</strong> similar methods to develop simple<br />

empirical models <strong>of</strong> <strong>water</strong>-<strong>use</strong> for <strong>the</strong> species and environments that <strong>the</strong>y manage.<br />

The difference between ra<strong>in</strong>fall and <strong>water</strong>-<strong>use</strong> represents <strong>the</strong> amount <strong>of</strong> <strong>water</strong> that is available<br />

ei<strong>the</strong>r as streamflow or ground<strong>water</strong>. Where forest management <strong>in</strong>creases <strong>water</strong>-<strong>use</strong>, it can<br />

be deduced that <strong>the</strong>re will be a reduction <strong>in</strong> <strong>water</strong> available ei<strong>the</strong>r as streamflow or<br />

ground<strong>water</strong>. This would give plantation (and forest managers) <strong>the</strong> power to consider<br />

plantation <strong>water</strong>-<strong>use</strong> and its affect on <strong>water</strong> availability dur<strong>in</strong>g decision mak<strong>in</strong>g processes.<br />

Fur<strong>the</strong>r <strong>water</strong>-<strong>use</strong> studies could be undertaken <strong>in</strong> gauged catchments if a greater<br />

understand<strong>in</strong>g is required <strong>of</strong> <strong>the</strong> relationship between <strong>water</strong>-<strong>use</strong> and streamflow, however, it<br />

is likely that this relationship will vary markedly between catchments based on <strong>the</strong>ir size,<br />

geology, topography, <strong>the</strong> mix <strong>of</strong> land <strong>use</strong>s, wea<strong>the</strong>r and ra<strong>in</strong>fall patterns, and as such any<br />

relationships may not be readily transferable between sites.


Contents<br />

Executive Summary .................................................................................................................... i<br />

1. Introduction ........................................................................................................................ 1<br />

2. Florent<strong>in</strong>e Study Summary ................................................................................................ 4<br />

3. Forestier Plantation Water-<strong>use</strong> ......................................................................................... 11<br />

3.1. Site description .......................................................................................................... 12<br />

3.2. Wea<strong>the</strong>r Station ......................................................................................................... 13<br />

3.3. Plantation basal area and sapwood area .................................................................... 13<br />

3.4. Instrumentation overview .......................................................................................... 14<br />

3.5. Soil evaporation......................................................................................................... 14<br />

3.6. Canopy Interception .................................................................................................. 14<br />

3.7. Transpiration ............................................................................................................. 17<br />

3.8. Forestier Water-<strong>use</strong> Summary ................................................................................... 18<br />

4. Comparison <strong>of</strong> Florent<strong>in</strong>e and Forestier Results .............................................................. 19<br />

4.1. <strong>Predict<strong>in</strong>g</strong> Forestier <strong>water</strong>-<strong>use</strong> with Equation 1 ........................................................ 21<br />

5. Process Model Comparisons ............................................................................................ 22<br />

5.1. ProMod ...................................................................................................................... 22<br />

5.2. CABALA .................................................................................................................. 22<br />

6. F<strong>in</strong>al <strong>water</strong>-<strong>use</strong> function ................................................................................................... 25<br />

7. Modell<strong>in</strong>g <strong>water</strong>-<strong>use</strong> <strong>of</strong> <strong>plantations</strong> us<strong>in</strong>g Forestry Tasmania’s Forest Estate Model ..... 26<br />

8. Future research needs ....................................................................................................... 34<br />

9. Discussion and Conclusions ............................................................................................. 36<br />

10. Recommendations ......................................................................................................... 38<br />

11. References ..................................................................................................................... 39<br />

12. Acknowledgements ....................................................................................................... 43<br />

13. Appendix 1. ProMod outputs for Florent<strong>in</strong>e and Forestier .......................................... 44


1. Introduction<br />

Plantation development can result <strong>in</strong> changes to <strong>the</strong> availability <strong>of</strong> <strong>water</strong> (ei<strong>the</strong>r as streamflow<br />

or <strong>in</strong> ground<strong>water</strong>). Where grassland is planted with trees, <strong>water</strong> availability can decrease<br />

(Bosch and Hewlett, 1982: Vertessy, 2001: Bren et al., 2006: Best et al, 2003). Where forest<br />

is replaced with plantation <strong>the</strong>re can be changes <strong>in</strong> <strong>water</strong> availability <strong>in</strong> ei<strong>the</strong>r direction (Bren<br />

and Hopmans, 2007: Bren et al., 2006: Cornish and Vertessy, 2001). The changes <strong>in</strong> <strong>water</strong><br />

availability are l<strong>in</strong>ked to changes <strong>in</strong> <strong>the</strong> capacity <strong>of</strong> vegetation to <strong>use</strong> <strong>water</strong>.<br />

In this paper, <strong>water</strong>-<strong>use</strong> is <strong>the</strong> term <strong>use</strong>d to describe <strong>the</strong> total amount <strong>of</strong> <strong>water</strong> evaporated<br />

from an area <strong>of</strong> plantation due to transpiration, canopy <strong>in</strong>terception and soil evaporation.<br />

However, it is common for o<strong>the</strong>r authors to <strong>use</strong> <strong>the</strong> terms evapotranspiration or <strong>in</strong>terception<br />

to describe <strong>water</strong>-<strong>use</strong>. Water availability is <strong>the</strong> term <strong>use</strong>d <strong>in</strong> this paper to describe <strong>the</strong><br />

difference between ra<strong>in</strong>fall and <strong>water</strong>-<strong>use</strong>. Available <strong>water</strong> ei<strong>the</strong>r becomes streamflow, or<br />

moves <strong>in</strong>to and through soil or aquifers. O<strong>the</strong>r authors may refer to <strong>water</strong> availability as<br />

<strong>water</strong> yield or describe its components.<br />

In regions <strong>of</strong> Australia where <strong>water</strong> resources are <strong>in</strong> limited supply or where <strong>the</strong>re is concern<br />

that aquatic, riparian or ground<strong>water</strong> ecosystems could be impacted by reduced <strong>water</strong><br />

availability, <strong>water</strong> licens<strong>in</strong>g, codes <strong>of</strong> practice, regulations and policy have been developed to<br />

preserve <strong>water</strong> resources. These codes and regulations may limit plantation development or<br />

make it more expensive.<br />

The National Water Initiative represents an agreement by governments across Australia to<br />

achieve a more cohesive approach to <strong>the</strong> way Australia manages, measures, plans for, prices,<br />

and trades <strong>water</strong> (Council <strong>of</strong> Australian Governments, 2005). The National Water Initiative<br />

gives governments <strong>the</strong> power to manage <strong>in</strong>terception by <strong>plantations</strong> ei<strong>the</strong>r by limit<strong>in</strong>g <strong>the</strong>ir<br />

development or by issu<strong>in</strong>g <strong>water</strong> licences.<br />

In South Australia, <strong>the</strong> State government has policies to limit plantation development <strong>in</strong> some<br />

locations or to issue <strong>water</strong> licences to protect ground<strong>water</strong> resources (Department for Water,<br />

2012). In some states, Forestry regulators and Codes <strong>of</strong> Forest Practice limit <strong>the</strong> extent <strong>of</strong><br />

forest and plantation activity <strong>in</strong> some catchments. For example, catchments contribut<strong>in</strong>g to<br />

council or domestic <strong>water</strong> supplies, or catchments with threatened aquatic species, may have<br />

limits on <strong>the</strong> area <strong>of</strong> plantation developed dur<strong>in</strong>g a nom<strong>in</strong>ated period (Forest Practices Board,<br />

2000).<br />

In rare cases, plantation development has been prevented by legal action from neighbours<br />

who fear that local surface and ground<strong>water</strong> resources would be compromised by plantation<br />

development (e.g. Forest Practices Tribunal, 2009 - Clement v FPA and Curran, 2009).<br />

Restrictions on plantation development or a requirement to purchase <strong>water</strong> licences<br />

ultimately lead to greater costs for <strong>in</strong>dustry through greater dispersion <strong>of</strong> <strong>the</strong> plantation estate<br />

or through <strong>the</strong> purchase <strong>of</strong> <strong>water</strong> licences.<br />

1


It is important that <strong>water</strong>-<strong>use</strong> by <strong>plantations</strong> can be quantified and predicted so that catchment<br />

managers, <strong>water</strong> authorities and natural resource managers can ensure that <strong>water</strong> supplies,<br />

licensed allocations, threatened species, ecosystems and aquaculture are not compromised; so<br />

that forest managers can avoid unwanted impacts on <strong>water</strong> while cont<strong>in</strong>u<strong>in</strong>g to produce<br />

wood; and so that regulators can develop and implement fair regulations and policies.<br />

State agencies and <strong>water</strong> management authorities are consider<strong>in</strong>g how to account for and<br />

manage <strong>water</strong> <strong>use</strong> by <strong>plantations</strong> but <strong>the</strong> methods <strong>use</strong>d to do this mostly require fur<strong>the</strong>r<br />

development. The State Government <strong>of</strong> Victoria plans to <strong>use</strong> <strong>the</strong> Department <strong>of</strong> Primary<br />

Industries Land Use Information System to model <strong>the</strong> <strong>water</strong> <strong>use</strong> <strong>of</strong> different land <strong>use</strong>s based<br />

on previous studies <strong>of</strong> evapotranspiration, streamflow and ground<strong>water</strong> (Department <strong>of</strong><br />

Susta<strong>in</strong>ability and Environment, 2011). South Australia <strong>use</strong>s an “annualised deemed value”<br />

for plantation <strong>water</strong> consumption to allocate licenses and identify plantation development<br />

thresholds (Harvey, 2009). This smoo<strong>the</strong>s hydrologic impact over <strong>the</strong> full forest rotation<br />

period and expresses impacts as an annualised value for <strong>the</strong> full rotation <strong>of</strong> all <strong>plantations</strong> <strong>of</strong><br />

<strong>the</strong> same species <strong>in</strong> <strong>the</strong> same ground<strong>water</strong> management area. The Department <strong>of</strong> Primary<br />

Industries, Parks, Water and Environment <strong>in</strong> Tasmania have <strong>in</strong>cluded plantation <strong>water</strong> <strong>use</strong> <strong>in</strong><br />

some <strong>of</strong> <strong>the</strong>ir streamflow models by <strong>in</strong>corporat<strong>in</strong>g <strong>the</strong> TasLUCaS plantation streamflow<br />

change equation (Brown et al., 2006; Hydro Tasmania Consult<strong>in</strong>g, 2007). The Tasmanian<br />

streamflow models are currently <strong>use</strong>d to determ<strong>in</strong>e which catchments may have significant<br />

impacts from plantation development.<br />

Plantation owners have attempted to understand <strong>the</strong> impacts <strong>of</strong> <strong>plantations</strong> on <strong>water</strong> resources<br />

through paired catchment experiments (Cornish and Vertessy, 2001; Bren and Hopmans,<br />

2007 ), <strong>water</strong> <strong>use</strong> studies (Forrester et al., 2010; Hatton and Vertessy, 1990; McJannet et al.,<br />

2000; Feikema et al., 2007; Benyon and Doody, 2004) and process models such as 3PG,<br />

CABALA (Battaglia et al., 2004), and Promod (Sands et al., 2000). While <strong>the</strong>re is a general<br />

understand<strong>in</strong>g <strong>of</strong> <strong>the</strong> direction and magnitude <strong>of</strong> <strong>water</strong> <strong>use</strong> or streamflow change associated<br />

with plantation development <strong>in</strong> some locations as a result <strong>of</strong> <strong>the</strong>se studies, <strong>the</strong> development<br />

and implementation <strong>of</strong> tools that enable plantation owners to assess impacts <strong>of</strong> <strong>plantations</strong><br />

and plan activities to m<strong>in</strong>imise negative outcomes for <strong>water</strong> resources is ongo<strong>in</strong>g.<br />

To quantify, predict and manage <strong>water</strong>-<strong>use</strong> by <strong>plantations</strong>, Forestry Tasmania commenced a<br />

program <strong>of</strong> research <strong>in</strong> 2007. The objective <strong>of</strong> <strong>the</strong> research was to develop a tool that enables<br />

assessment <strong>of</strong> plantation <strong>water</strong>-<strong>use</strong> dur<strong>in</strong>g <strong>the</strong> wood-flow plann<strong>in</strong>g process. Early <strong>in</strong> <strong>the</strong><br />

research program Forestry Tasmania’s Forest Estate Model (FEM) was identified as a tool<br />

that could be developed for <strong>water</strong> management. The FEM currently <strong>use</strong>s <strong>in</strong>formation on <strong>the</strong><br />

location, type, management and growth <strong>of</strong> <strong>plantations</strong> to predict wood-flow. By <strong>in</strong>clud<strong>in</strong>g<br />

simple empirical plantation <strong>water</strong>-<strong>use</strong> functions <strong>in</strong> <strong>the</strong> FEM it would be able to<br />

simultaneously assess <strong>water</strong>-<strong>use</strong> and wood production, and explore different harvest and<br />

plant<strong>in</strong>g schedules to optimise wood production and/or <strong>water</strong> availability.<br />

Previous studies provide evidence <strong>of</strong> l<strong>in</strong>ks between forest and plantation <strong>water</strong> <strong>use</strong> and<br />

growth parameters such as sapwood area, leaf area and basal area (Macfarlane et al., 2010;<br />

Forrester et al., 2010; Roberts et al., 2001; Vertessy et al., 2001). Creat<strong>in</strong>g plantation <strong>water</strong>-<br />

2


<strong>use</strong> functions based on growth parameters for <strong>use</strong> <strong>in</strong> <strong>the</strong> FEM requires fur<strong>the</strong>r collection <strong>of</strong><br />

site and species specific <strong>water</strong>-<strong>use</strong> and growth data, evaluation <strong>of</strong> exist<strong>in</strong>g growth and <strong>water</strong><strong>use</strong><br />

models, and <strong>use</strong> <strong>of</strong> previously published data. Forestry Tasmania chose to focus on<br />

develop<strong>in</strong>g a function for <strong>Eucalyptus</strong> <strong>nitens</strong> <strong>plantations</strong> <strong>in</strong> Tasmania – this be<strong>in</strong>g a widely<br />

planted species for which limited <strong>water</strong>-<strong>use</strong> <strong>in</strong>formation was available, and an ideal candidate<br />

for a pilot study given <strong>the</strong> uniform plantation stand structure.<br />

This report describes E. <strong>nitens</strong> <strong>water</strong>-<strong>use</strong> experiments conducted at two locations <strong>in</strong><br />

Tasmania; <strong>the</strong> Florent<strong>in</strong>e Valley, where <strong>water</strong>-<strong>use</strong> was measured <strong>in</strong> 5 <strong>plantations</strong> over a 3<br />

year period, and at Forestier, a drier site on <strong>the</strong> Tasman Pen<strong>in</strong>sula, where <strong>water</strong>-<strong>use</strong> was<br />

measured <strong>in</strong> 1 plantation over a 1 year period.<br />

The experimental methods were described <strong>in</strong> Roberts and Barton-Johnson (2009). Much <strong>of</strong><br />

<strong>the</strong> <strong>in</strong>spiration for <strong>the</strong> experimental methods came from Roberts (2001), Roberts et al. (2001),<br />

Benyon and Doody (2004), and Putuhena and Cordery (1996).<br />

The results <strong>of</strong> <strong>the</strong> Florent<strong>in</strong>e <strong>water</strong>-<strong>use</strong> study were published <strong>in</strong> Roberts (2011A). A<br />

summary <strong>of</strong> <strong>the</strong> most important results from <strong>the</strong> Florent<strong>in</strong>e study is provided <strong>in</strong> Roberts<br />

(2011A). A description <strong>of</strong> <strong>the</strong> Forestier plantation and <strong>the</strong> results <strong>of</strong> <strong>the</strong> Forestier study are<br />

provided <strong>in</strong> this report as <strong>the</strong>y are not published elsewhere. Evaluation <strong>of</strong> exist<strong>in</strong>g models<br />

was described by Roberts (2011). Updated comparisons <strong>of</strong> two models, ProMod and<br />

CABALA, are presented <strong>in</strong> this report.<br />

The process <strong>of</strong> develop<strong>in</strong>g <strong>the</strong> E. <strong>nitens</strong> <strong>water</strong>-<strong>use</strong> function for <strong>the</strong> FEM is described <strong>in</strong> this<br />

report. Examples are provided <strong>of</strong> <strong>the</strong> outputs from <strong>the</strong> FEM when <strong>the</strong> <strong>water</strong>-<strong>use</strong> function<br />

derived from <strong>the</strong> experiments is <strong>in</strong>cluded.<br />

3


2. Florent<strong>in</strong>e Study Summary<br />

Figure 1. Location <strong>of</strong> Florent<strong>in</strong>e study sites (Source - Google Maps and Forestry Tasmania<br />

GIS)<br />

Water-<strong>use</strong> and its constituent processes (transpiration, canopy <strong>in</strong>terception and soil<br />

evaporation) were measured <strong>in</strong> five E. <strong>nitens</strong> <strong>plantations</strong> <strong>of</strong> different age (Table 1) situated<br />

close to each o<strong>the</strong>r <strong>in</strong> <strong>the</strong> Florent<strong>in</strong>e Valley (Figure 1) <strong>in</strong> Tasmania from 2008 to 2010. The<br />

<strong>plantations</strong> occur at 375-425 m above sea level on Jurassic dolerite with some limestone<br />

outcrops. The soils are deep well-dra<strong>in</strong>ed red/brown ferrosols (Grant et al., 1995). Annual<br />

ra<strong>in</strong>fall <strong>in</strong> <strong>the</strong> Florent<strong>in</strong>e Valley was between 984 and 1425 mm dur<strong>in</strong>g <strong>the</strong> experiment; <strong>the</strong><br />

long-term average ra<strong>in</strong>fall at <strong>the</strong> nearest wea<strong>the</strong>r station is 1200 mm/yr (Maydena, Bureau <strong>of</strong><br />

Meteorology). Potential evaporation (Silo Data Drill, QLD DERM) ranged between 887 and<br />

4


975 mm/yr dur<strong>in</strong>g <strong>the</strong> experiment. The ratios <strong>of</strong> ra<strong>in</strong>fall to potential evaporation suggest that<br />

<strong>the</strong> site is seasonally <strong>water</strong>-limited but anecdotal evidence suggests that, dur<strong>in</strong>g dry summer<br />

periods, <strong>the</strong> trees have access to ground <strong>water</strong>, and that <strong>the</strong>ir overall annual <strong>water</strong>-<strong>use</strong> is<br />

consistent with that <strong>of</strong> <strong>plantations</strong> grow<strong>in</strong>g on a non-<strong>water</strong>-limited site. Roberts (2011A)<br />

provides a full description <strong>of</strong> <strong>the</strong> <strong>plantations</strong> and <strong>the</strong> results from this experiment.<br />

Estimates <strong>of</strong> annual and monthly basal area, canopy <strong>in</strong>terception, soil evaporation and<br />

transpiration were made dur<strong>in</strong>g <strong>the</strong> study (Roberts, 2011). The purpose <strong>of</strong> <strong>the</strong>se estimates<br />

was to generate estimates <strong>of</strong> annual <strong>water</strong>-<strong>use</strong> for adjacent <strong>plantations</strong> <strong>of</strong> different age and<br />

basal area, with a view to develop<strong>in</strong>g <strong>water</strong>-<strong>use</strong> functions that could be <strong>use</strong>d <strong>in</strong> <strong>the</strong> FEM.<br />

Only annual data are shown <strong>in</strong> this report as this is <strong>the</strong> temporal scale <strong>of</strong> <strong>the</strong> FEM. Data<br />

could be disaggregated to smaller time <strong>in</strong>tervals if <strong>the</strong>y were required for o<strong>the</strong>r <strong>use</strong>s.<br />

The amount <strong>of</strong> <strong>water</strong>-<strong>use</strong>d by <strong>the</strong> <strong>plantations</strong>, and <strong>the</strong> proportions <strong>of</strong> this total <strong>use</strong>d by <strong>the</strong><br />

different <strong>water</strong>-<strong>use</strong> processes (transpiration, canopy <strong>in</strong>terception and soil evaporation), varied<br />

with age (Figure 2). Figure 2 shows <strong>the</strong> annual canopy <strong>in</strong>terception, soil evaporation and<br />

transpiration associated with each plantation for each year, and <strong>the</strong> th<strong>in</strong>n<strong>in</strong>g status <strong>of</strong> <strong>the</strong><br />

plantation.<br />

In a plantation less than 1-year-old, soil evaporation was <strong>the</strong> dom<strong>in</strong>ant process, account<strong>in</strong>g<br />

for 376 mm/yr, while transpiration and canopy <strong>in</strong>terception comb<strong>in</strong>ed only accounted for 168<br />

mm/yr. In an 11-year-old unth<strong>in</strong>ned plantation, transpiration (445 mm/yr) and canopy<br />

<strong>in</strong>terception (379 mm/yr) were <strong>the</strong> dom<strong>in</strong>ant processes, with soil evaporation just 40 mm/yr.<br />

Th<strong>in</strong>n<strong>in</strong>g reduced canopy <strong>in</strong>terception and transpiration, from around 1000 mm/yr <strong>in</strong> an<br />

unth<strong>in</strong>ned stand to around 660 mm/yr, while markedly <strong>in</strong>creas<strong>in</strong>g soil evaporation, from an<br />

unth<strong>in</strong>ned value <strong>of</strong> around 40 mm/yr to a th<strong>in</strong>ned value <strong>of</strong> 120-200 mm/yr.<br />

Annual <strong>water</strong>-<strong>use</strong> was thus l<strong>in</strong>ked to <strong>the</strong> age <strong>of</strong> unth<strong>in</strong>ned <strong>plantations</strong> (R 2 =0.68; Figure 3),<br />

and also th<strong>in</strong>n<strong>in</strong>g status (Figure 3). The th<strong>in</strong>ned data set doesn’t span enough years to allow<br />

analysis over time.<br />

In 2010 all <strong>plantations</strong> recorded lower than anticipated <strong>water</strong>-<strong>use</strong>. This is probably beca<strong>use</strong><br />

lower than average ra<strong>in</strong>fall (984 mm) and lower than average potential evaporation (887 mm)<br />

occurred <strong>in</strong> 2010. Some <strong>of</strong> <strong>the</strong> variation <strong>in</strong> <strong>the</strong> relationship between annual <strong>water</strong>-<strong>use</strong> and age<br />

thus appears to be due to environmental conditions experienced dur<strong>in</strong>g <strong>the</strong> year <strong>of</strong><br />

measurement. Water-<strong>use</strong> <strong>of</strong> <strong>plantations</strong> <strong>of</strong> <strong>the</strong> same age could <strong>the</strong>refore vary between years.<br />

Fur<strong>the</strong>rmore, plantation growth is also a function <strong>of</strong> <strong>the</strong> conditions experienced throughout<br />

<strong>the</strong> entire life-cycle <strong>of</strong> <strong>the</strong> plantation, and some <strong>plantations</strong> orig<strong>in</strong>ated dur<strong>in</strong>g periods with<br />

better conditions than o<strong>the</strong>rs and hence had greater density, leaf area and/or basal area for a<br />

given age. Thus, unth<strong>in</strong>ned Plantation 20A had lower <strong>water</strong>-<strong>use</strong> <strong>in</strong> 2008 than younger and<br />

older unth<strong>in</strong>ned <strong>plantations</strong> <strong>in</strong> that year, which may <strong>in</strong>dicate that this plantation has a lower<br />

leaf area or growth rate than o<strong>the</strong>r <strong>plantations</strong> due ei<strong>the</strong>r to site quality or <strong>the</strong> conditions<br />

experienced <strong>in</strong> its early life.<br />

5


Table 1. Plot <strong>in</strong>formation for E. <strong>nitens</strong> <strong>plantations</strong> <strong>in</strong> Florent<strong>in</strong>e Valley<br />

Coupe ID FO021AC FO021AT FO020A FO023C FO022D<br />

Eucalypt Species E. <strong>nitens</strong> E. <strong>nitens</strong> E. <strong>nitens</strong> E. <strong>nitens</strong> E. <strong>nitens</strong><br />

Date Planted 08/1999 08/1999 08/2001 05/2004 10/2007<br />

Coupe size (ha) 60 60 82 44 56<br />

Mean annual<br />

<strong>in</strong>crement<br />

(m 3 /ha)<br />

Experimental<br />

Plot Area (m 2 )<br />

Number <strong>of</strong> trees<br />

<strong>in</strong> plot (before<br />

and after<br />

th<strong>in</strong>n<strong>in</strong>g, where<br />

th<strong>in</strong>ned)<br />

Regime<br />

27 27 24 26 25<br />

910 815 1104 1075 864<br />

96 86 / 27 125 / 47 110 120<br />

EC3 High<br />

prune<br />

EC3 High<br />

prune<br />

6<br />

EC3<br />

High<br />

prune<br />

EC3 High<br />

prune<br />

EC2 Mid<br />

Prune<br />

East<strong>in</strong>g 456323 456294 456366 455520 456102<br />

North<strong>in</strong>g 5282925 5282934 5282070 5283350 5283431<br />

Orig<strong>in</strong>al stock<strong>in</strong>g 1086 1086 1067 1100 1100<br />

Date/s <strong>of</strong> prun<strong>in</strong>g<br />

Dates <strong>of</strong> th<strong>in</strong>n<strong>in</strong>g<br />

Pest control<br />

1/4/05<br />

8/2/07<br />

unth<strong>in</strong>ned<br />

control<br />

24/12/03<br />

28/11/05<br />

1/4/05<br />

8/2/07<br />

1/3/06<br />

18/12/06<br />

1/2/08<br />

29/08/07 28/11/08<br />

24/12/03<br />

28/11/05<br />

24/12/03<br />

28/11/05<br />

30/12/07<br />

15/5/08 unpruned<br />

Plantation<br />

th<strong>in</strong>ned,<br />

but<br />

research<br />

plot<br />

unth<strong>in</strong>ned<br />

24/12/08<br />

30/12/07<br />

unth<strong>in</strong>ned


Water Use (mm/yr)<br />

08<br />

09<br />

10<br />

08<br />

09<br />

10 08<br />

08 09<br />

10<br />

Figure 2. Annual canopy <strong>in</strong>terception, soil evaporation and transpiration for each plantation,<br />

for each year <strong>of</strong> age, for th<strong>in</strong>ned and unth<strong>in</strong>ned <strong>plantations</strong> <strong>in</strong> <strong>the</strong> Florent<strong>in</strong>e Valley.<br />

Numbers above each column are <strong>the</strong> calendar year <strong>of</strong> measurement. Numbers at <strong>the</strong> base <strong>of</strong><br />

columns are coupe names.<br />

Water Use (mm/yr)<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

Unth<strong>in</strong>ned<br />

Figure 3. The relationship between age and annual <strong>water</strong>-<strong>use</strong> <strong>of</strong> <strong>plantations</strong> <strong>in</strong> <strong>the</strong> Florent<strong>in</strong>e<br />

Valley. Blue squares represent unth<strong>in</strong>ned <strong>plantations</strong>, red squares represent th<strong>in</strong>ned<br />

<strong>plantations</strong>. Labels show plot ID, year <strong>of</strong> measurement and plantation age.<br />

7<br />

09<br />

10<br />

08 09<br />

1 2 3 4 5 6 7 9 10 11 8 9 9 10 11<br />

Age<br />

Miss<strong>in</strong>g<br />

data<br />

Th<strong>in</strong>ned<br />

22D 23C 20A 21AC<br />

20A<br />

21AT<br />

22D 2008 Age 1<br />

22D 2009 Age 2<br />

22D 2010 Age 3<br />

23C 2008 Age 4<br />

23C 2009 Age 5<br />

10<br />

Canopy <strong>in</strong>terception<br />

Soil evaporation<br />

Transpiration<br />

21AC 2008 Age 9<br />

y = 130.93ln(x) + 559.49<br />

R² = 0.44<br />

21AC 2009 Age 10<br />

21AC 2010 Age 11<br />

21AT 2008 Age 9 Th<strong>in</strong>ned 21AT 2009 Age 10 Th<strong>in</strong>ned<br />

20A 2008 Age 7<br />

23C 2010 Age 6<br />

21AT 2010 Age 11 Th<strong>in</strong>ned<br />

0 2 4 6 8 10 12<br />

Age (years)


Age could be <strong>use</strong>d to predict <strong>water</strong>-<strong>use</strong> <strong>in</strong> <strong>the</strong> FEM (Figure 3); however, stand basal area<br />

(Figure 4) was a better predictor <strong>of</strong> <strong>water</strong>-<strong>use</strong> than age.<br />

Figure 4 shows <strong>the</strong> relationship between annual average basal area and annual total <strong>water</strong>-<strong>use</strong><br />

for each plantation and year <strong>of</strong> <strong>the</strong> study – 2009 and 2010 data were miss<strong>in</strong>g for 20A th<strong>in</strong>ned<br />

plots. There is a strong relationship between basal area and <strong>water</strong>-<strong>use</strong> (R 2 =0.59).<br />

Water Use (mm/yr)<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

22D 2008 Age 1<br />

21AT 2008 Age 9 Th<strong>in</strong>ned<br />

22D 2009 Age 2<br />

23C 2008 Age 4<br />

22D 2010 Age 3<br />

23C 2009 Age 5<br />

21AT 2009 Age 10 Th<strong>in</strong>ned<br />

20A 2008 Age 7<br />

23C 2010 Age 6<br />

21AT 2010 Age 11 Th<strong>in</strong>ned<br />

Figure 4. Relationship between basal area and <strong>water</strong>-<strong>use</strong> for th<strong>in</strong>ned and unth<strong>in</strong>ned<br />

<strong>plantations</strong> <strong>in</strong> <strong>the</strong> Florent<strong>in</strong>e Valley. Labels show plot ID, year <strong>of</strong> measurement, age, and<br />

th<strong>in</strong>n<strong>in</strong>g status.<br />

Mean error <strong>in</strong> <strong>the</strong> prediction <strong>of</strong> <strong>water</strong>-<strong>use</strong> from <strong>the</strong> basal area: <strong>water</strong>-<strong>use</strong> function <strong>of</strong> Figure 4<br />

was 10% (Table 2), with errors rang<strong>in</strong>g from 1 to 22% for <strong>in</strong>dividual <strong>plantations</strong> and years<br />

(mean absolute error <strong>of</strong> 76 mm, Statgraphics). The model residuals <strong>in</strong>dicate that <strong>the</strong> function<br />

is a good fit to <strong>the</strong> data.<br />

8<br />

y = 125.25ln(x) + 461.36<br />

R² = 0.59<br />

21AC 2008 Age 9<br />

21AC 2009 Age 10<br />

21AC 2010 Age 11<br />

0 5 10 15 20<br />

Basal Area (m2/ha)<br />

25 30 35 40


It is important to note that <strong>the</strong> basal area: <strong>water</strong>-<strong>use</strong> function (Figure 4) has an upper limit<br />

determ<strong>in</strong>ed by potential evapotranspiration 1 (around 930 mm/yr), and a lower limit which<br />

represents <strong>the</strong> <strong>water</strong>-<strong>use</strong> <strong>of</strong> deforested land (around 500 mm/yr depend<strong>in</strong>g on weed/grass<br />

cover). It is likely that once <strong>the</strong> upper limit <strong>of</strong> <strong>water</strong>-<strong>use</strong> is achieved by a plantation, <strong>water</strong><strong>use</strong><br />

will cont<strong>in</strong>ue at this level while <strong>the</strong> plantation rema<strong>in</strong>s <strong>in</strong> good health.<br />

The potential evaporation estimate for <strong>the</strong> Florent<strong>in</strong>e Valley was obta<strong>in</strong>ed from Silo Data<br />

Drill and is calculated from air temperature, solar radiation and vapour pressure deficit data.<br />

Rayner (2006) concluded that <strong>the</strong> estimation method <strong>use</strong>d by Silo Data Drill tends to<br />

underestimate solar radiation dur<strong>in</strong>g w<strong>in</strong>dy conditions. It is likely that <strong>the</strong> annual potential<br />

evaporation estimate provided by Silo Data Drill is an underestimate for <strong>the</strong> site. This may<br />

expla<strong>in</strong> why it was possible for measured <strong>water</strong> <strong>use</strong> to exceed 1000 mm/yr <strong>in</strong> <strong>the</strong> oldest<br />

unth<strong>in</strong>ned plantation.<br />

Table 2. Summary <strong>of</strong> results for model fitt<strong>in</strong>g.<br />

Basal<br />

Area<br />

(m2/ha)<br />

Water<br />

Use<br />

Actual<br />

(mm/yr)<br />

Water Use<br />

Predicted<br />

(mm/yr)<br />

Water Use<br />

Residual<br />

(Actual-<br />

Predicted)<br />

Water<br />

Use Error<br />

(%) Year<br />

1.5 544.4 514.9 29.4 5.4 2008<br />

4.0 684.8 635.1 49.7 7.3 2009<br />

9.7 611.2 745.8 -134.7 22.0 2010<br />

8.3 746.0 725.8 20.2 2.7 2008<br />

13.2 909.1 784.5 124.5 13.7 2009<br />

18.7 753.3 828.0 -74.7 9.9 2010<br />

23.2 757.2 855.4 -98.2 13.0 2008<br />

32.2 1052.2 896.1 156.2 14.8 2008<br />

34.8 1022.2 906.1 116.1 11.4 2009<br />

37.3 864.4 914.5 -50.1 5.8 2010<br />

12.6 768.5 778.8 -10.3 1.3 2008<br />

14.5 779.8 796.4 -16.6 2.1 2009<br />

16.8 702.8 814.4 -111.6 15.9 2010<br />

Average Error<br />

1 Potential evapotranspiration (PET) is <strong>the</strong> loss expected over a surface with no limitation <strong>of</strong> <strong>water</strong>. It is a<br />

function <strong>of</strong> <strong>the</strong> atmospheric demand which depends primarily on <strong>the</strong> energy available from net radiation, <strong>the</strong><br />

humidity gradient <strong>in</strong> <strong>the</strong> lower atmosphere, w<strong>in</strong>d speed and surface roughness (Beven, 2005) or, is a<br />

representation <strong>of</strong> <strong>the</strong> environmental demand for evapotranspiration and represents <strong>the</strong> evapotranspiration rate <strong>of</strong><br />

a short green crop, completely shad<strong>in</strong>g <strong>the</strong> ground, <strong>of</strong> uniform height and with adequate <strong>water</strong> status <strong>in</strong> <strong>the</strong> soil<br />

pr<strong>of</strong>ile. It is a reflection <strong>of</strong> <strong>the</strong> energy available to evaporate <strong>water</strong>, and <strong>of</strong> <strong>the</strong> w<strong>in</strong>d available to transport <strong>the</strong><br />

<strong>water</strong> vapour from <strong>the</strong> ground up <strong>in</strong>to <strong>the</strong> lower atmosphere. Actual evapotranspiration is said to equal potential<br />

evapotranspiration when <strong>the</strong>re is ample <strong>water</strong> (Wikipedia - http://en.wikipedia.org/wiki/Evapotranspiration).<br />

9<br />

9.6


The basal area: <strong>water</strong>-<strong>use</strong> function calculated for <strong>the</strong> Florent<strong>in</strong>e stands (Figure 4) tends to<br />

overestimate <strong>water</strong>-<strong>use</strong> dur<strong>in</strong>g years <strong>of</strong> low ra<strong>in</strong>fall and underestimate <strong>water</strong>-<strong>use</strong> dur<strong>in</strong>g years<br />

<strong>of</strong> high ra<strong>in</strong>fall. Table 2 shows that <strong>in</strong> 2010, when ra<strong>in</strong>fall was 983 mm, actual m<strong>in</strong>us<br />

predicted <strong>water</strong>-<strong>use</strong> was always negative. In 2008 which had 1259 mm and 2009 which had<br />

1425 mm <strong>of</strong> ra<strong>in</strong>, actual m<strong>in</strong>us predicted <strong>water</strong>-<strong>use</strong> was more likely to be positive.<br />

A multiple l<strong>in</strong>ear regression us<strong>in</strong>g basal area (m 2 /ha) and annual ra<strong>in</strong>fall (mm/yr) was formed<br />

<strong>in</strong> Statgraphics to predict <strong>water</strong>-<strong>use</strong> (WU) (Equation 1). P values below 0.05 for <strong>the</strong><br />

<strong>in</strong>tercept, basal area (BA) and ra<strong>in</strong>fall (R), and an R 2 <strong>of</strong> 0.82 compared to an R 2 <strong>of</strong> 0.59 for<br />

<strong>the</strong> regression us<strong>in</strong>g basal area alone (Figure 4), shows that <strong>the</strong> ra<strong>in</strong>fall term is a <strong>use</strong>ful<br />

addition to <strong>the</strong> function. Equation 1 reduces <strong>the</strong> estimate <strong>of</strong> mean absolute error to 50 mm <strong>in</strong><br />

<strong>the</strong> WU estimate compared with 76 mm for Figure 4 (Statgraphics). The derived function is:<br />

WU = 149+11.0*BA+0.361*R Equation 1.<br />

Includ<strong>in</strong>g ra<strong>in</strong>fall <strong>in</strong> <strong>the</strong> function improves its ability to predict WU, and means that average<br />

ra<strong>in</strong>fall can be <strong>in</strong>cluded <strong>in</strong> predictions <strong>of</strong> <strong>water</strong>-<strong>use</strong>, that a stochastic ra<strong>in</strong>fall model could be<br />

l<strong>in</strong>ked to <strong>the</strong> FEM to assess <strong>the</strong> effect <strong>of</strong> ra<strong>in</strong>fall variability on <strong>water</strong>-<strong>use</strong> predictions, and that<br />

<strong>the</strong> FEM could assess scenarios where ra<strong>in</strong>fall is reduced or <strong>in</strong>creased <strong>in</strong> response to climate<br />

change (although evaluat<strong>in</strong>g climate change impacts is challeng<strong>in</strong>g beca<strong>use</strong> changes <strong>in</strong> <strong>water</strong><strong>use</strong><br />

due to higher atmospheric CO2 concentrations are still unknown).<br />

10


3. Forestier Plantation Water-<strong>use</strong><br />

A plantation <strong>water</strong>-<strong>use</strong> research site was established <strong>in</strong> a plantation at Forestier <strong>in</strong> February<br />

2011 to measure transpiration, canopy <strong>in</strong>terception and soil evaporation. Forestier was<br />

selected beca<strong>use</strong> it has lower ra<strong>in</strong>fall and greater potential to experience <strong>water</strong> deficits than<br />

<strong>the</strong> Florent<strong>in</strong>e Valley. A wea<strong>the</strong>r station was also established. The same measurement<br />

techniques were <strong>use</strong>d as at <strong>the</strong> Florent<strong>in</strong>e site (Roberts and Barton-Johnson, 2009).<br />

Data were collected from Forestier to see if Equation 1, which was developed from<br />

Florent<strong>in</strong>e Valley plantation <strong>water</strong>-<strong>use</strong> data, can be successfully applied to o<strong>the</strong>r locations.<br />

Figure 5. Location Map for Forestier research with “A” <strong>in</strong>dicat<strong>in</strong>g research site location<br />

(Source- Google Maps)<br />

11


3.1. Site description<br />

The Forestier plantation is located near Hylands Rd, approximately 45 km east <strong>of</strong> Hobart<br />

(East<strong>in</strong>g 575,043, North<strong>in</strong>g 5,243,134) (Figure 5). The plantation research plot is<br />

approximately 270 m above sea level.<br />

The E. <strong>nitens</strong> plantation was established <strong>in</strong> June 2005 at a density <strong>of</strong> 1117 stems per hectare.<br />

Spot cultivation was <strong>use</strong>d to prepare <strong>the</strong> soil beca<strong>use</strong> <strong>the</strong> site is stony. The plantation is<br />

managed for pulp production and is not pruned or th<strong>in</strong>ned, and <strong>the</strong>re is no <strong>in</strong>tention <strong>of</strong> <strong>the</strong>se<br />

activities occurr<strong>in</strong>g <strong>in</strong> <strong>the</strong> future.<br />

The research plot is underla<strong>in</strong> with Jurassic dolerite, and boulders and cobbles are common<br />

on <strong>the</strong> surface (30-80%), and <strong>in</strong> <strong>the</strong> soil matrix (50-90%). The soil is described as well<br />

dra<strong>in</strong>ed, with moderate potential for erosion and low fertiliser requirement.<br />

The nearest Bureau <strong>of</strong> Meteorology ra<strong>in</strong> gauge is at Dunalley, approximately 6 km west <strong>of</strong><br />

<strong>the</strong> site. Between 1974 and 2011, ra<strong>in</strong>fall averaged 700 mm/yr at Dunalley, rang<strong>in</strong>g from 511<br />

to 1029 mm/yr. There is no dist<strong>in</strong>ct ra<strong>in</strong>fall pattern <strong>in</strong> <strong>the</strong> monthly records. Most months<br />

average more than 50 mm <strong>of</strong> ra<strong>in</strong>fall (Figure 6).<br />

There are no local temperature data available – <strong>the</strong> nearest Bureau <strong>of</strong> Meteorology wea<strong>the</strong>r<br />

station is at Hobart airport, approximately 35 km to <strong>the</strong> west.<br />

Figure 6. Average monthly ra<strong>in</strong>fall at Dunalley between 1974 and 2011 (Bureau <strong>of</strong><br />

Meteorology)<br />

12


3.2. Wea<strong>the</strong>r Station<br />

An automatic wea<strong>the</strong>r station was placed <strong>in</strong> a clear<strong>in</strong>g adjacent to <strong>the</strong> research plantation. It<br />

recorded ra<strong>in</strong>fall, air temperature, ground temperature, humidity, solar radiation, w<strong>in</strong>d speed<br />

and direction. Data prior to May 2011 were lost due to technical difficulties. The tipp<strong>in</strong>gbucket<br />

ra<strong>in</strong> gauge recorded less ra<strong>in</strong> than <strong>the</strong> bulk ra<strong>in</strong> gauge (tipp<strong>in</strong>g bucket = 456 mm <strong>of</strong><br />

ra<strong>in</strong> between 7/5/2011 and 31/1/2012) and was deemed to be defective. The maximum<br />

temperature recorded was 29 o C, <strong>the</strong> m<strong>in</strong>imum recorded was 0 o C.<br />

3.3. Plantation basal area and sapwood area<br />

A 20 m x 20 m (400 m 2 ) measurement plot conta<strong>in</strong><strong>in</strong>g 39 trees (some with multiple stems)<br />

was established on 26/2/2011. The diameter <strong>of</strong> every stem with<strong>in</strong> <strong>the</strong> plot was measured at<br />

1.3 m. Stems were remeasured on 20/6/2011, 19/10/2011 and 7/2/2012. Plot basal area grew<br />

from 29.27 m 2 /ha on <strong>the</strong> 26/2/2011 to 32.52 m 2 /ha on 7/2/2012.<br />

Sapwood area was determ<strong>in</strong>ed for a number <strong>of</strong> trees us<strong>in</strong>g an <strong>in</strong>crement corer and assum<strong>in</strong>g<br />

radial symmetry. Sapwood area was strongly correlated with basal area (R 2 =0.78) for<br />

<strong>in</strong>dividual trees (Figure 7). Plot sapwood area was estimated at 10.75 m 2 /ha at<br />

commencement and 11.77 m 2 /ha at completion <strong>of</strong> <strong>the</strong> experiment.<br />

Sapwood Area (cm 2 )<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Figure 7. Relationship between stem basal area and stem sapwood area <strong>of</strong> E. <strong>nitens</strong> at<br />

Forestier<br />

13<br />

y = 0.3051x + 17.8<br />

R² = 0.78<br />

0 50 100 150 200 250 300 350 400 450 500<br />

Basal Area (cm 2 )


3.4. Instrumentation overview<br />

M<strong>in</strong>i lysimeters and bulk ra<strong>in</strong> gauges were placed beneath <strong>the</strong> canopy to determ<strong>in</strong>e soil<br />

evaporation. A throughfall trough was placed under <strong>the</strong> canopy and ano<strong>the</strong>r was placed <strong>in</strong> a<br />

nearby clear<strong>in</strong>g. Stem flow collectors were placed on three trees <strong>in</strong> <strong>the</strong> plot. A bulk ra<strong>in</strong><br />

gauge was placed <strong>in</strong> <strong>the</strong> clear<strong>in</strong>g alongside <strong>the</strong> wea<strong>the</strong>r station and throughfall trough to<br />

verify <strong>the</strong> results from <strong>the</strong>se. Heat pulse sensors were deployed to measure sap velocity <strong>in</strong> a<br />

subsample <strong>of</strong> stems.<br />

3.5. Soil evaporation<br />

Soil evaporation was measured with 10 m<strong>in</strong>i lysimeters, and 10 ra<strong>in</strong> gauges, each placed at<br />

random distances and bear<strong>in</strong>gs from a central po<strong>in</strong>t <strong>in</strong> <strong>the</strong> plot. The lysimeters were <strong>in</strong>stalled<br />

on 28/2/2011, and removed on 30/1/12 – a period <strong>of</strong> 11 months. Dur<strong>in</strong>g this time, an average<br />

<strong>of</strong> 96 mm <strong>of</strong> soil evaporation was measured from <strong>the</strong> lysimeters. Soil evaporation for <strong>the</strong><br />

lysimeters was scaled to <strong>the</strong> year by assum<strong>in</strong>g <strong>the</strong> evaporation from <strong>the</strong> miss<strong>in</strong>g month was<br />

equivalent to <strong>the</strong> average rate over <strong>the</strong> whole period <strong>of</strong> measurement – giv<strong>in</strong>g a total <strong>of</strong> 105<br />

mm/year from <strong>the</strong> lysimeters. However, beca<strong>use</strong> approximately 50% <strong>of</strong> <strong>the</strong> plot soil surface<br />

is covered with boulders which do not allow evaporation, <strong>the</strong> soil evaporation <strong>of</strong> <strong>the</strong> plot was<br />

estimated at 52 mm/yr.<br />

The bulk ra<strong>in</strong> gauges associated with <strong>the</strong> lysimeters collected a total <strong>of</strong> 738 mm <strong>of</strong> ra<strong>in</strong>fall<br />

beneath <strong>the</strong> canopy, 5 additional ra<strong>in</strong> gauges collected 601 mm – <strong>the</strong>se values are <strong>use</strong>ful for<br />

contrast with <strong>the</strong> throughfall troughs and <strong>the</strong> ra<strong>in</strong> gauge <strong>in</strong> <strong>the</strong> open<br />

3.6. Canopy Interception<br />

Calculat<strong>in</strong>g canopy <strong>in</strong>terception requires a good estimate <strong>of</strong> ra<strong>in</strong>fall. The tipp<strong>in</strong>g bucket ra<strong>in</strong><br />

gauge with <strong>the</strong> Automatic Wea<strong>the</strong>r Station consistently underestimated ra<strong>in</strong>fall when<br />

compared with <strong>the</strong> bulk ra<strong>in</strong> gauge <strong>in</strong> <strong>the</strong> clear<strong>in</strong>g, while <strong>the</strong> throughfall trough <strong>in</strong> <strong>the</strong> open<br />

collected amounts <strong>of</strong> ra<strong>in</strong> that were mostly consistent with <strong>the</strong> bulk gauge. The throughfall<br />

trough operated from 3/5/11 to 30/1/12 so provides a good record <strong>of</strong> daily ra<strong>in</strong>fall for this<br />

period. Ra<strong>in</strong>fall data are available from Dunalley (Bureau <strong>of</strong> Meteorology), so ra<strong>in</strong>fall at<br />

Dunalley from 1/1/11-3/5/11 was <strong>use</strong>d to help generate an estimate <strong>of</strong> total ra<strong>in</strong>fall for 2011<br />

<strong>of</strong> 854 mm.<br />

The throughfall trough under <strong>the</strong> canopy was plagued with technical problems – ei<strong>the</strong>r <strong>the</strong><br />

<strong>in</strong>lets were blocked by frass or <strong>the</strong> gauge was unbalanced or misaligned with <strong>the</strong> siphon.<br />

Periods <strong>of</strong> good data from <strong>the</strong> throughfall trough were identified by comparison with ra<strong>in</strong>fall<br />

measured <strong>in</strong> <strong>the</strong> ra<strong>in</strong> gauges beneath <strong>the</strong> canopy. Sixty-seven days <strong>of</strong> good throughfall data<br />

were collected simultaneously <strong>in</strong> <strong>the</strong> open and under <strong>the</strong> canopy. These days were <strong>use</strong>d to<br />

determ<strong>in</strong>e <strong>the</strong> proportion <strong>of</strong> ra<strong>in</strong>fall that is captured on <strong>the</strong> foliage on each ra<strong>in</strong>fall day<br />

(Figure 8). Approximately 74% <strong>of</strong> ra<strong>in</strong>fall passed through <strong>the</strong> canopy to <strong>the</strong> soil surface and<br />

26% <strong>of</strong> ra<strong>in</strong>fall was <strong>in</strong>tercepted.<br />

14


Ra<strong>in</strong>fall Collected <strong>in</strong> Throughfall Trough Below Canopy (mm/day)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Figure 8. Relationship between ra<strong>in</strong>fall collected <strong>in</strong> <strong>the</strong> throughfall troughs <strong>in</strong> <strong>the</strong> open and<br />

under <strong>the</strong> canopy at Forestier<br />

Stemflow was measured on 4 trees from 13/4/11 to 12/1/12, a period <strong>of</strong> 9 months. Stemflow<br />

was collected <strong>in</strong> 20 L conta<strong>in</strong>ers for three trees, and 1 tree was fitted with a tipp<strong>in</strong>g bucket<br />

ra<strong>in</strong> gauge. Tree 25 with <strong>the</strong> tipp<strong>in</strong>g bucket ra<strong>in</strong> gauge collected 303.3 L, Tree 32 collected<br />

358.4 L, tree 34 collected 225.5 L and tree 37 collected 324.38 L dur<strong>in</strong>g <strong>the</strong> n<strong>in</strong>e months.<br />

To estimate annual stemflow, stemflow needs to be predicted for <strong>the</strong> first three months <strong>of</strong><br />

2011. The relationship between ra<strong>in</strong>fall collected <strong>in</strong> <strong>the</strong> open trough and stemflow measured<br />

on tree 25 by <strong>the</strong> tipp<strong>in</strong>g bucket ra<strong>in</strong> gauge (Figure 9) was <strong>use</strong>d to estimate stemflow for tree<br />

25 from <strong>the</strong> ra<strong>in</strong>fall record for 1/1/11 to 12/4/11. Stemflow was estimated at 107.4 L for tree<br />

25 dur<strong>in</strong>g this period. Stemflow for this period was estimated for <strong>the</strong> three o<strong>the</strong>r trees based<br />

on <strong>the</strong> proportional relationship to tree 25 dur<strong>in</strong>g <strong>the</strong> measurement period. This gave total<br />

stemflow volumes for 2011 <strong>of</strong> 409.3, 480.9, 304.5, and 437.4 L for trees 25, 32, 34 and 37<br />

respectively.<br />

15<br />

y = 0.74x<br />

R² = 0.93<br />

0 5 10 15 20 25 30 35<br />

Ra<strong>in</strong>fall Collected <strong>in</strong> Throughfall Trough <strong>in</strong> Open (mm/day)


Stemflow (L) <strong>of</strong> Tree 25<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Figure 9. Relationship between daily ra<strong>in</strong>fall and stemflow for tree 25<br />

There was a close relationship (R 2 =0.99) between stem diameter and stemflow across <strong>the</strong> 4<br />

trees (Figure 10). This relationship was <strong>use</strong>d to estimate <strong>the</strong> stemflow (L) <strong>of</strong> each tree <strong>in</strong> <strong>the</strong><br />

plot, and <strong>the</strong>se values were summed to estimate plot stemflow (16,059 L) <strong>the</strong>n divided by <strong>the</strong><br />

plot area (400 m 2 ) to give stemflow <strong>of</strong> 40.14 mm for <strong>the</strong> year.<br />

16<br />

y = 0.02x 2 + 0.18x - 0.01<br />

R² = 0.89<br />

0 5 10 15 20 25 30 35 40<br />

Ra<strong>in</strong>fall (mm)


Stemflow (L)<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

Figure 10. Relationship between stem diameter and stem flow for 4 trees at Forestier<br />

Canopy <strong>in</strong>terception was <strong>the</strong>n calculated to account for 182 mm <strong>of</strong> <strong>the</strong> ra<strong>in</strong>fall occurr<strong>in</strong>g at<br />

<strong>the</strong> site:<br />

Canopy <strong>in</strong>terception = Ra<strong>in</strong>fall – Throughfall – Stemflow = 854 – 632 – 40 = 182 mm/yr.<br />

3.7. Transpiration<br />

Transpiration is <strong>the</strong> product <strong>of</strong> sapwood area and sap velocity. Plot sapwood area, plot sap<br />

velocity and plot transpiration were calculated for each day, and transpiration was summed<br />

for <strong>the</strong> period <strong>of</strong> <strong>the</strong> study.<br />

Plot sapwood area was estimated for each day by assum<strong>in</strong>g l<strong>in</strong>ear growth <strong>in</strong> sapwood<br />

between <strong>the</strong> sapwood estimates derived from plot <strong>in</strong>ventory.<br />

Sap velocity was measured at 4 locations <strong>in</strong> each <strong>of</strong> 4 trees from 24/2/2011 to 7/2/2012.<br />

Sensors were allocated to different depths below <strong>the</strong> cambium to generate sap velocity<br />

estimates that were representative <strong>of</strong> <strong>the</strong> range <strong>of</strong> flow rates observed <strong>in</strong> <strong>the</strong> sapwood band.<br />

Sap velocity was estimated for each day by tak<strong>in</strong>g <strong>the</strong> average value <strong>of</strong> all operat<strong>in</strong>g sensors<br />

for that day. There were very few days with no data. Data from 1/11/11 onwards were<br />

modified to account for <strong>the</strong> large step change <strong>in</strong> sap velocity that occurred when sensors were<br />

moved to new positions on this date – it appears that <strong>the</strong> pott<strong>in</strong>g mix that <strong>in</strong>sulates <strong>the</strong><br />

<strong>the</strong>rmistors <strong>in</strong> <strong>the</strong> sensors had degraded and that mov<strong>in</strong>g <strong>the</strong> probes ca<strong>use</strong>d <strong>the</strong> pott<strong>in</strong>g mix to<br />

fracture lead<strong>in</strong>g to <strong>the</strong> erratic behaviour seen <strong>in</strong> some probes from this time onwards. Figure<br />

11 shows <strong>the</strong> daily average sap velocity values after <strong>the</strong> last months <strong>of</strong> data were modified.<br />

17<br />

y = 18.2x + 43.9<br />

R² = 0.99<br />

200<br />

10 12 14 16 18<br />

Stem diameter (cm)<br />

20 22 24 26


For <strong>the</strong> 333 days on which data were collected, sap velocity averaged 6.8 cm/hr. The daily<br />

value ranged from 0.29 to 16.43 cm/hr, with a median <strong>of</strong> 6.47 cm/hr and standard deviation<br />

<strong>of</strong> 3.51 cm/hr.<br />

Average daily sap velocity (cm/hr)<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

24/02/2011<br />

5/03/2011<br />

20/03/2011<br />

29/03/2011<br />

7/04/2011<br />

16/04/2011<br />

25/04/2011<br />

4/05/2011<br />

13/05/2011<br />

22/05/2011<br />

31/05/2011<br />

9/06/2011<br />

18/06/2011<br />

27/06/2011<br />

6/07/2011<br />

15/07/2011<br />

24/07/2011<br />

2/08/2011<br />

11/08/2011<br />

20/08/2011<br />

29/08/2011<br />

16/09/2011<br />

25/09/2011<br />

4/10/2011<br />

13/10/2011<br />

22/10/2011<br />

31/10/2011<br />

9/11/2011<br />

18/11/2011<br />

27/11/2011<br />

6/12/2011<br />

15/12/2011<br />

24/12/2011<br />

2/01/2012<br />

11/01/2012<br />

20/01/2012<br />

29/01/2012<br />

7/02/2012<br />

Figure 11. Daily sap velocity averaged across all function<strong>in</strong>g sensors from <strong>the</strong> Forestier<br />

research site<br />

To provide an estimate <strong>of</strong> transpiration for a year, transpiration was estimated for 7/2/2011-<br />

24/2/2011 by tak<strong>in</strong>g <strong>the</strong> average <strong>of</strong> January and February data.<br />

Over <strong>the</strong> period <strong>of</strong> <strong>the</strong> study, daily plot transpiration averaged 1.8 mm, with a m<strong>in</strong>imum <strong>of</strong><br />

0.2 mm and a maximum <strong>of</strong> 3.9 mm/day. The sum <strong>of</strong> transpiration was 558 mm for <strong>the</strong> year.<br />

3.8. Forestier Water-<strong>use</strong> Summary<br />

Ra<strong>in</strong>fall for 2011 was estimated at 854 mm. Canopy <strong>in</strong>terception accounted for 182 mm or<br />

21% <strong>of</strong> <strong>the</strong> ra<strong>in</strong>fall occurr<strong>in</strong>g at <strong>the</strong> site. Soil evaporation accounted for 52 mm or 6% <strong>of</strong> <strong>the</strong><br />

ra<strong>in</strong>fall occurr<strong>in</strong>g at <strong>the</strong> site. Transpiration accounted for 558 mm or 65% <strong>of</strong> <strong>the</strong> ra<strong>in</strong>fall<br />

occurr<strong>in</strong>g at <strong>the</strong> site. Total <strong>water</strong>-<strong>use</strong> was 792 mm for 2011, which is 93% <strong>of</strong> ra<strong>in</strong>fall.<br />

18<br />

Date


4. Comparison <strong>of</strong> Florent<strong>in</strong>e and Forestier Results<br />

Figure 12 is a plot <strong>of</strong> basal area and sapwood area <strong>of</strong> <strong>in</strong>dividual trees <strong>in</strong> <strong>the</strong> Florent<strong>in</strong>e Valley<br />

(aged > 5 years or < 5 years), and Forestier. The data were segregated accord<strong>in</strong>g to age<br />

beca<strong>use</strong> <strong>the</strong> ratio <strong>of</strong> sapwood to basal area changes after <strong>the</strong> canopy <strong>of</strong> <strong>the</strong> plantation closes at<br />

around 5 years. The Forestier results fall with<strong>in</strong> <strong>the</strong> cloud <strong>of</strong> data po<strong>in</strong>ts generated <strong>in</strong> <strong>the</strong><br />

Florent<strong>in</strong>e Valley, and <strong>the</strong> l<strong>in</strong>es <strong>of</strong> best fit overlay each o<strong>the</strong>r. Statgraphics “Comparison <strong>of</strong><br />

regression l<strong>in</strong>es” <strong>in</strong>dicates that <strong>the</strong>re is no significant difference between <strong>the</strong> two fitted<br />

models (α=0.05). This result supports <strong>the</strong> <strong>use</strong> <strong>of</strong> <strong>the</strong> Florent<strong>in</strong>e sapwood area model <strong>in</strong> o<strong>the</strong>r<br />

locations or <strong>the</strong> <strong>in</strong>clusion <strong>of</strong> Forestier data <strong>in</strong> <strong>the</strong> Florent<strong>in</strong>e model.<br />

Sapwood Area (cm 2 )<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

y = 0.30x + 17.8<br />

R² = 0.78<br />

0 100 200 300 400 500 600 700 800<br />

Basal Area (cm 2 )<br />

Figure 12. Relationship between basal area and sapwood area for trees aged >5 years at<br />

Florent<strong>in</strong>e, aged 5years)


Table 3. Summary statistics for daily sap velocity (cm/hr)<br />

Plot ID Florent<strong>in</strong>e Florent<strong>in</strong>e Florent<strong>in</strong>e Florent<strong>in</strong>e Florent<strong>in</strong>e Forestier<br />

22D 23C 20A 21AT 21AC<br />

Mean sap<br />

velocity<br />

6.41 6.54 5.66 8.12 5.92 6.8<br />

Median sap<br />

velocity<br />

5.94 6.53 5.04 7.37 5.81 6.47<br />

M<strong>in</strong>imum sap<br />

velocity<br />

1.45 2.24 0.95 2.16 1.83 0.29<br />

Maximum sap<br />

velocity<br />

15.05 14.15 14.26 20.11 11.91 16.72<br />

Standard<br />

deviation<br />

3.64 3.07 3.27 4.15 2.50 3.51<br />

The sap velocity records for each plot span different periods so represent sap velocity<br />

responses to different sets <strong>of</strong> environmental conditions as well as to different growth stage<br />

and management events (e.g. th<strong>in</strong>n<strong>in</strong>g <strong>in</strong> 21AT). Once <strong>the</strong> <strong>plantations</strong> exceed 2 years <strong>of</strong> age,<br />

<strong>the</strong>re is no age related pattern to <strong>the</strong> mean daily sap velocity <strong>of</strong> <strong>the</strong> different <strong>plantations</strong><br />

(Figure 13, R 2 =0.02) with all unth<strong>in</strong>ned <strong>plantations</strong> exhibit<strong>in</strong>g a mean daily sap velocity<br />

between 4 and 7 cm/hr. Th<strong>in</strong>ned <strong>plantations</strong> exhibit a higher mean daily sap velocity <strong>of</strong> 7 to<br />

8 cm/hr. The 1 year old plantation exhibited a substantially higher mean daily sap velocity<br />

around 10 cm/hr.<br />

Average sap velocity (cm/hr)<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

2008<br />

2009<br />

2010<br />

2008<br />

2009<br />

Figure 13. Relationship between plantation age and annual average sap velocity (cm/hr), for<br />

Florent<strong>in</strong>e unth<strong>in</strong>ned > 2 years old (red squares), Forestier unth<strong>in</strong>ned < 2 years old (green<br />

20<br />

2010<br />

2011<br />

y = -0.04x + 5.77<br />

R² = 0.02<br />

2008<br />

2008<br />

2008<br />

y = -0.21x + 9.71<br />

R² = 0.25<br />

2010<br />

0 2 4 6<br />

Plantation age (years)<br />

8 10 12<br />

unth<strong>in</strong>ned>2 th<strong>in</strong>ned unth<strong>in</strong>ned


triangle), Florent<strong>in</strong>e th<strong>in</strong>ned (blue diamonds) and Forestier (purple circle). Year <strong>of</strong><br />

measurement is shown for each data po<strong>in</strong>t<br />

Sap velocity is highest <strong>in</strong> <strong>the</strong> 1 -year-old trees, probably beca<strong>use</strong> a small cross-sectional area<br />

<strong>of</strong> stem is support<strong>in</strong>g a relatively large leaf area when compared with <strong>the</strong> older trees, and<br />

beca<strong>use</strong> <strong>the</strong> low height (short path length) and new wood vessels (higher conductivity) <strong>of</strong> <strong>the</strong><br />

seedl<strong>in</strong>gs mean that <strong>the</strong>y would have lower hydraulic resistance (Ryan and Yoder, 1997).<br />

4.1. <strong>Predict<strong>in</strong>g</strong> Forestier <strong>water</strong>-<strong>use</strong> with Equation 1<br />

When <strong>the</strong> basal area (30.18 m 2 /ha) and ra<strong>in</strong>fall (854 mm) values for Forestier are entered <strong>in</strong><br />

Equation 1, <strong>the</strong> estimated annual <strong>water</strong>-<strong>use</strong> is 791 mm. The measured value was 792 mm.<br />

This result provides some confidence that Equation 1 derived from Florent<strong>in</strong>e data can be<br />

applied to E. <strong>nitens</strong> at Forestier.<br />

21


5. Process Model Comparisons<br />

Even though <strong>the</strong> aim <strong>of</strong> this study was to develop a simple empirical model for <strong>water</strong>-<strong>use</strong><br />

prediction, process models such as ProMod (Battaglia and Sands, 1997) and CABALA<br />

(Battaglia et al., 2004) can also be <strong>use</strong>d to estimate both <strong>the</strong> basal area and <strong>water</strong>-<strong>use</strong> <strong>of</strong><br />

<strong>plantations</strong> <strong>in</strong> different locations <strong>in</strong> Tasmania, and thus could possibly be <strong>use</strong>d to test and<br />

ref<strong>in</strong>e <strong>the</strong> empirical relationship between <strong>the</strong>se parameters for different regions.<br />

5.1. ProMod<br />

ProMod is a simple model that predicts <strong>the</strong> growth <strong>of</strong> forest follow<strong>in</strong>g canopy closure<br />

(Battaglia and Sands, 1997). ProMod also predicts <strong>water</strong>-<strong>use</strong> based on a crop factor which is<br />

a function <strong>of</strong> soil <strong>water</strong> content, and <strong>water</strong>-<strong>use</strong> efficiency which is a function <strong>of</strong> vapour<br />

pressure deficit. It requires <strong>in</strong>formation about plantation species, location, climate and soil.<br />

It tabulates results for growth, summarises <strong>in</strong>formation about site conditions and charts<br />

growth parameters aga<strong>in</strong>st plantation age.<br />

ProMod was run for <strong>the</strong> Florent<strong>in</strong>e and Forestier sites us<strong>in</strong>g <strong>the</strong> Forestry Tasmania Toolbox<br />

(Appendix 1). While ProMod gives annual basal area as an output, it does not give as an<br />

output annual <strong>water</strong>-<strong>use</strong>. Instead, <strong>water</strong>-<strong>use</strong> is given as an average annual rate for <strong>the</strong><br />

plantation when aged greater than 3 years.<br />

Roberts (2011) showed that ProMod basal area estimates were consistent with measurements<br />

made <strong>in</strong> <strong>the</strong> Florent<strong>in</strong>e Valley. ProMod underestimated basal area for Forestier (20-25 m 2 /ha<br />

versus 30 m 2 /ha), however <strong>the</strong> measurement plot at Forestier was <strong>in</strong> <strong>the</strong> most productive part<br />

<strong>of</strong> <strong>the</strong> plantation, and ProMod is describ<strong>in</strong>g <strong>the</strong> average condition <strong>of</strong> a plantation <strong>in</strong> that<br />

region.<br />

Overall, <strong>the</strong> estimates <strong>of</strong> basal area from ProMod appear to be representative <strong>of</strong> <strong>the</strong> growth<br />

occurr<strong>in</strong>g at Florent<strong>in</strong>e and Forestier. This is reassur<strong>in</strong>g given that <strong>the</strong> ProMod growth<br />

models are an important component <strong>of</strong> <strong>the</strong> FEM. However, <strong>the</strong> <strong>water</strong>-<strong>use</strong> estimates cannot be<br />

properly evaluated <strong>in</strong> <strong>the</strong>ir current form.<br />

5.2. CABALA<br />

CABALA is a l<strong>in</strong>ked carbon, <strong>water</strong> and nutrient model designed to be a practical tool to aid<br />

forest managers with decision mak<strong>in</strong>g (Battaglia et al., 2004). CABALA was designed for<br />

<strong>Eucalyptus</strong> globulus, but has been partially parameterised for E. <strong>nitens</strong>.<br />

CABALA was run us<strong>in</strong>g detailed regimes for each <strong>of</strong> <strong>the</strong> five research plots <strong>in</strong> <strong>the</strong> Florent<strong>in</strong>e<br />

Valley – <strong>in</strong>clud<strong>in</strong>g accurate plant<strong>in</strong>g dates and local daily wea<strong>the</strong>r data (Roberts, 2011).<br />

Water-<strong>use</strong> and growth were over-predicted by CABALA. Even with <strong>the</strong> revised <strong>water</strong>-<strong>use</strong><br />

results from <strong>the</strong> August 2011 report, CABALA cont<strong>in</strong>ues to overestimate <strong>water</strong>-<strong>use</strong> (Figure<br />

15). This is potentially beca<strong>use</strong> CABALA is overestimat<strong>in</strong>g <strong>the</strong> basal area <strong>of</strong> unth<strong>in</strong>ned<br />

forests (Figure 14). Benyon et al. (2009) also found that CABALA overestimated <strong>water</strong> <strong>use</strong><br />

<strong>in</strong> <strong>the</strong> Green Triangle – particularly for non-<strong>water</strong>-limited <strong>plantations</strong>. Roberts (2011)<br />

reported that CABALA showed promise for estimat<strong>in</strong>g E. <strong>nitens</strong> basal area and <strong>water</strong>-<strong>use</strong> <strong>in</strong><br />

22


<strong>the</strong> Florent<strong>in</strong>e Valley, but that it does need fur<strong>the</strong>r calibration. Data from <strong>the</strong> Florent<strong>in</strong>e<br />

study were provided to <strong>the</strong> creators <strong>of</strong> CABALA <strong>in</strong> November 2011 to help facilitate fur<strong>the</strong>r<br />

calibration.<br />

At this stage, <strong>the</strong>refore, nei<strong>the</strong>r CABALA nor ProMod can lend fur<strong>the</strong>r value to <strong>the</strong><br />

modell<strong>in</strong>g <strong>of</strong> E. <strong>nitens</strong> <strong>water</strong>-<strong>use</strong>; however <strong>the</strong>y both have <strong>the</strong> capacity to do so <strong>in</strong> <strong>the</strong> future<br />

by chang<strong>in</strong>g <strong>the</strong> output format (ProMod) or better calibrat<strong>in</strong>g <strong>the</strong> growth model (CABALA).<br />

Basal Area (m 2 /ha)<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 2 4 6<br />

Age (years)<br />

8 10 12<br />

Figure 14. Plantation age and measured basal area (Florent<strong>in</strong>e study, blue diamonds) or<br />

predicted basal area for each plot from CABALA.<br />

23<br />

Measured<br />

20A<br />

23C<br />

21AT<br />

21AC<br />

22D


Water <strong>use</strong> (mm/yr)<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

Figure 15. CABALA basal area and <strong>water</strong>-<strong>use</strong> predictions (upper l<strong>in</strong>e, blue diamonds)<br />

compared with Florent<strong>in</strong>e measurements (lower l<strong>in</strong>e, green triangles).<br />

24<br />

y = 113.02ln(x) + 654.39<br />

R² = 0.82<br />

y = 125.25ln(x) + 461.36<br />

R² = 0.59<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Average Basal Area for year (m 2 /ha)<br />

Cabala Florent<strong>in</strong>e Measured Log. (Cabala) Log. (Florent<strong>in</strong>e Measured)


6. F<strong>in</strong>al <strong>water</strong>-<strong>use</strong> function<br />

The recommended function for <strong>in</strong>clusion <strong>in</strong> <strong>the</strong> FEM to estimate E. <strong>nitens</strong> <strong>water</strong>-<strong>use</strong> <strong>in</strong><br />

Tasmania is:<br />

WU = 149+11.0*BA+0.361*R Equation 1.<br />

Where WU is <strong>water</strong>-<strong>use</strong> <strong>in</strong> mm/yr, BA is plot basal area <strong>in</strong> m 2 /ha, and R is ra<strong>in</strong>fall <strong>in</strong> mm/yr.<br />

This function is better than <strong>the</strong> Roberts (2011A) function (Figure 4.) beca<strong>use</strong> it allows <strong>water</strong><strong>use</strong><br />

to be varied <strong>in</strong> response to differences <strong>in</strong> annual ra<strong>in</strong>fall.<br />

Maps <strong>of</strong> ra<strong>in</strong>fall isohyets are available for Tasmania. Grids and shape files for ra<strong>in</strong>fall can be<br />

downloaded from http://www.bom.gov.au/jsp/ncc/climate_averages/ra<strong>in</strong>fall/<strong>in</strong>dex.jsp and<br />

could potentially be <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> FEM, or, if more detailed ra<strong>in</strong>fall data are desired, actual<br />

data or syn<strong>the</strong>tic ra<strong>in</strong>fall data from Silo Data drill for specific sites could be <strong>in</strong>cluded <strong>in</strong> <strong>the</strong><br />

FEM.<br />

Inclusion <strong>of</strong> potential evaporation maps to set <strong>the</strong> upper limit for <strong>water</strong>-<strong>use</strong> would prevent<br />

estimates <strong>of</strong> <strong>water</strong>-<strong>use</strong> be<strong>in</strong>g made that exceed what is physically possible. Grids and shape<br />

files for potential evaporation can be downloaded from<br />

http://www.bom.gov.au/jsp/ncc/climate_averages/evaporation/<strong>in</strong>dex.jsp .<br />

25


7. Modell<strong>in</strong>g <strong>water</strong>-<strong>use</strong> <strong>of</strong> <strong>plantations</strong> us<strong>in</strong>g Forestry<br />

Tasmania’s Forest Estate Model<br />

The purpose <strong>of</strong> collect<strong>in</strong>g <strong>water</strong>-<strong>use</strong> data was to construct a simple empirical <strong>water</strong>-<strong>use</strong> model<br />

that could be <strong>in</strong>cluded <strong>in</strong> FT’s Forest Estate Model (FEM).<br />

Forest Estate Models are <strong>use</strong>d by forest companies to estimate volumes <strong>of</strong> stand<strong>in</strong>g and<br />

harvested timber through time and to predict and compare f<strong>in</strong>ancial returns. They enable<br />

managers to schedule <strong>the</strong>ir activities based on constra<strong>in</strong>ts such as <strong>the</strong> need to operate on <strong>the</strong><br />

basis <strong>of</strong> susta<strong>in</strong>able yield, and aid decision-mak<strong>in</strong>g by allow<strong>in</strong>g <strong>the</strong> effects <strong>of</strong> different<br />

management scenarios on wood production and <strong>in</strong>come to be compared.<br />

Forestry Tasmania <strong>use</strong>s Woodstock (Rems<strong>of</strong>t Spatial Plann<strong>in</strong>g System) FEM. Woodstock<br />

dynamically models <strong>the</strong> growth <strong>of</strong> forests and <strong>plantations</strong> us<strong>in</strong>g yield tables.<br />

The FEM performs calculations for each def<strong>in</strong>ed plann<strong>in</strong>g unit, which is usually a coupe, but<br />

can provide analyses for a plot <strong>of</strong> land, property, compartment, cluster <strong>of</strong> coupes, catchment<br />

or <strong>the</strong> whole forest estate by comb<strong>in</strong><strong>in</strong>g results from multiple plann<strong>in</strong>g units. Inventory data,<br />

growth models, <strong>in</strong>formation about species, age, stock<strong>in</strong>g, management regimes, site quality<br />

and <strong>the</strong> location and extent <strong>of</strong> each plann<strong>in</strong>g unit, along with constra<strong>in</strong>ts or production<br />

objectives, are <strong>use</strong>d by <strong>the</strong> FEM to generate estimates <strong>of</strong> basal area for <strong>the</strong> plann<strong>in</strong>g unit<br />

(Figure 16). These <strong>in</strong> turn are converted to estimates <strong>of</strong> <strong>the</strong> volume <strong>of</strong> timber harvested and<br />

<strong>the</strong> volume stand<strong>in</strong>g. F<strong>in</strong>ancial <strong>in</strong>formation can be <strong>in</strong>cluded to produce estimates <strong>of</strong> <strong>the</strong> value<br />

<strong>of</strong> sales and <strong>the</strong> stand<strong>in</strong>g timber.<br />

If Equation 1 can be <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> FEM, <strong>the</strong>n <strong>water</strong>-<strong>use</strong> and wood production can be<br />

assessed simultaneously.<br />

Equation 1 was <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> FEM. For this study, a m<strong>in</strong>imum <strong>water</strong>-<strong>use</strong> <strong>of</strong> 591 mm/yr<br />

was set (this represents m<strong>in</strong>imum <strong>water</strong>-<strong>use</strong> from a site with no trees), and a maximum <strong>water</strong><strong>use</strong><br />

<strong>of</strong> 915 mm/yr was set (this represents mean annual PET for <strong>the</strong> Florent<strong>in</strong>e Valley).<br />

Average ra<strong>in</strong>fall for <strong>the</strong> Florent<strong>in</strong>e Valley <strong>of</strong> 1222 mm/yr was <strong>use</strong>d.<br />

To demonstrate how <strong>in</strong>clusion <strong>of</strong> Equation 1 <strong>in</strong> <strong>the</strong> FEM will work, predictions were made <strong>of</strong><br />

wood volumes, basal area and <strong>water</strong>-<strong>use</strong> over a 90-year period for all <strong>of</strong> <strong>the</strong> E. <strong>nitens</strong><br />

<strong>plantations</strong> occurr<strong>in</strong>g with<strong>in</strong> <strong>the</strong> Florent<strong>in</strong>e Valley (Figure 17). These <strong>plantations</strong> ranged <strong>in</strong><br />

age from 0-19 years at <strong>the</strong> start <strong>of</strong> <strong>the</strong> assessment, and covered a total area <strong>of</strong> 1532 ha.<br />

Predictions were also made for a s<strong>in</strong>gle coupe.<br />

26


Wood<br />

Volume<br />

Stand<strong>in</strong>g<br />

Wood<br />

Volume<br />

Cut<br />

F<strong>in</strong>ancial<br />

Analysis<br />

Inventory<br />

Data<br />

Growth<br />

Models<br />

Plann<strong>in</strong>g Unit<br />

Species, Age,<br />

Stock<strong>in</strong>g<br />

Figure 16. Schematic diagram <strong>of</strong> FEM structure, where green segments <strong>in</strong>dicate exist<strong>in</strong>g<br />

components, blue represents management objectives and constra<strong>in</strong>ts that can be changed <strong>in</strong><br />

accordance with company policy decisions, orange and <strong>the</strong> orange white segments <strong>in</strong>dicate<br />

processes that are be<strong>in</strong>g <strong>in</strong>corporated as a result <strong>of</strong> this study.<br />

27<br />

Site<br />

Quality<br />

FOREST ESTATE MODEL<br />

Basal Area<br />

Estimate<br />

Water-<strong>use</strong><br />

function<br />

Ra<strong>in</strong>fall and<br />

Potential<br />

Evaporation<br />

Management<br />

Regime<br />

Water<br />

Use<br />

Extent,<br />

Location<br />

Management<br />

Objectives &<br />

Constra<strong>in</strong>ts


Figure 17. Screen shot show<strong>in</strong>g <strong>plantations</strong> <strong>in</strong> <strong>the</strong> FEM Florent<strong>in</strong>e Valley assessment,<br />

colour-coded by year <strong>of</strong> plant<strong>in</strong>g<br />

The FEM ran three scenarios: a scenario where NPV <strong>of</strong> <strong>the</strong> <strong>plantations</strong> is maximised (Figure<br />

18), a scenario where <strong>the</strong> <strong>plantations</strong> are managed to smooth <strong>water</strong>-<strong>use</strong> (Figure 19), and a<br />

scenario to smooth wood supply (Figure 20). An example <strong>of</strong> <strong>the</strong> output for a s<strong>in</strong>gle coupe is<br />

also provided (Figure 21). For each scenario, screenshots <strong>of</strong> charts taken directly from <strong>the</strong><br />

FEM are provided. The first chart <strong>in</strong> each screenshot shows <strong>the</strong> volume <strong>of</strong> wood harvested<br />

each year, <strong>the</strong> second shows <strong>the</strong> basal area <strong>of</strong> <strong>the</strong> stand<strong>in</strong>g trees, and <strong>the</strong> third shows <strong>the</strong><br />

<strong>water</strong>-<strong>use</strong> <strong>of</strong> <strong>the</strong> <strong>plantations</strong>. The charts <strong>in</strong> Figures 18, 19 and 20 represent <strong>the</strong> wood volume,<br />

basal area and <strong>water</strong>-<strong>use</strong> <strong>of</strong> <strong>the</strong> total 1532 ha. To get wood volume <strong>in</strong> m 3 /ha, and basal area<br />

<strong>in</strong> m 2 /ha, <strong>the</strong> values on <strong>the</strong> vertical axes <strong>of</strong> <strong>the</strong> charts need to be divided by <strong>the</strong> total number<br />

<strong>of</strong> hectares (1532). Water-<strong>use</strong> is given as an average annual value across <strong>the</strong> whole area.<br />

Annual statistics for wood volume, basal area and <strong>water</strong>-<strong>use</strong> <strong>of</strong> <strong>the</strong> <strong>plantations</strong> are readily<br />

obta<strong>in</strong>ed from <strong>the</strong> FEM <strong>in</strong> tabular form to aid <strong>in</strong> fur<strong>the</strong>r analysis and decision mak<strong>in</strong>g if<br />

required.<br />

The charts demonstrate that manag<strong>in</strong>g <strong>plantations</strong> to produce smooth <strong>water</strong>-<strong>use</strong> and smooth<br />

wood production is compatible (see similarity between Figure 19 and Figure 20) – manag<strong>in</strong>g<br />

for one produces <strong>the</strong> o<strong>the</strong>r. This lends fur<strong>the</strong>r support to <strong>the</strong> concept <strong>of</strong> a regulated forest<br />

m<strong>in</strong>imis<strong>in</strong>g changes to hydrological systems (Hennes et al., 1971).<br />

28


In addition to produc<strong>in</strong>g <strong>the</strong> charts and basal area, wood volume and <strong>water</strong>-<strong>use</strong> predictions,<br />

<strong>the</strong> FEM produces a schedule that shows how management objectives can best be met. The<br />

FEM <strong>in</strong>dicates when and where activities such as plant<strong>in</strong>g, th<strong>in</strong>n<strong>in</strong>g and harvest<strong>in</strong>g should<br />

occur. FEM output is readily transferred to Micros<strong>of</strong>t Access where specific queries can be<br />

made to generate management plans over whatever term is deemed practical (Table 4).<br />

Figure 18. FEM screenshot show<strong>in</strong>g volume cut (m 3 /yr), stand<strong>in</strong>g basal area (m 2 ) and<br />

evapotranspiration (mm/yr) for each year <strong>of</strong> a 90-year simulation where objective is to<br />

maximise net present value for 1532 ha <strong>of</strong> E. <strong>nitens</strong> plantation <strong>in</strong> <strong>the</strong> Florent<strong>in</strong>e Valley<br />

29


Figure 19. FEM screenshot show<strong>in</strong>g volume cut (m 3 /yr), stand<strong>in</strong>g basal area (m 2 ) and<br />

evapotranspiration (mm/yr) for each year <strong>of</strong> a 90-year simulation where objective is to have<br />

non-decl<strong>in</strong><strong>in</strong>g total volume cut and smoo<strong>the</strong>d evapotranspiration (+/- 10%) scenario for 1532<br />

ha <strong>of</strong> E. <strong>nitens</strong> plantation <strong>in</strong> <strong>the</strong> Florent<strong>in</strong>e Valley<br />

30


Figure 20. FEM screenshot show<strong>in</strong>g volume cut (m 3 /yr), stand<strong>in</strong>g basal area (m 2 ) and<br />

evapotranspiration (mm/yr) for each year <strong>of</strong> a 90-year simulation where objective is to<br />

maximise Net Present Value with non-decl<strong>in</strong><strong>in</strong>g total volume cut for 1532 ha <strong>of</strong> E. <strong>nitens</strong><br />

plantation <strong>in</strong> <strong>the</strong> Florent<strong>in</strong>e Valley<br />

31


Figure 21. FEM screenshot for an <strong>in</strong>dividual E. <strong>nitens</strong> plantation show<strong>in</strong>g volume cut<br />

(m 3 /yr), basal area (m 2 ) and evapotranspiration (mm/yr) over 90 years (three rotations)<br />

32<br />

Th<strong>in</strong><br />

Clearfell


Table 4. Schedule <strong>of</strong> activities that will maximise Net Present Value with non-decl<strong>in</strong><strong>in</strong>g total<br />

volume cut and smoo<strong>the</strong>d <strong>water</strong>-<strong>use</strong> (+/- 10%). First 15 years <strong>of</strong> a 90-year scenario shown.<br />

Coupe ID Year Scheduled Activity Number <strong>of</strong> Hectares<br />

FO020A 2 Th<strong>in</strong> 44<br />

FO020A 3 Th<strong>in</strong> 39<br />

FO015B 4 Th<strong>in</strong> 23<br />

FO015D 4 Th<strong>in</strong> 4<br />

FO020G 4 Th<strong>in</strong> 36<br />

FO034F 4 Th<strong>in</strong> 7<br />

FO015D 5 Th<strong>in</strong> 38<br />

FO023C 5 Th<strong>in</strong> 12<br />

FO015B 6 Th<strong>in</strong> 17<br />

FO034F 6 Th<strong>in</strong> 56<br />

FO030A 7 Th<strong>in</strong> 30<br />

FO032X 7 Clearfell 17<br />

FO006E 8 Th<strong>in</strong> 17<br />

FO014D 8 Th<strong>in</strong> 35<br />

FO032X 8 Clearfell 7<br />

FO034F 8 Th<strong>in</strong> 9<br />

FO006E 9 Th<strong>in</strong> 25<br />

FO014G 9 Th<strong>in</strong> 37<br />

FO019C 9 Th<strong>in</strong> 2<br />

FO022I 9 Th<strong>in</strong> 32<br />

FO027D 9 Th<strong>in</strong> 16<br />

FO030G 9 Th<strong>in</strong> 31<br />

FO033B 9 Th<strong>in</strong> 21<br />

FO018C 10 Th<strong>in</strong> 74<br />

FO019C 10 Th<strong>in</strong> 33<br />

FO020F 10 Th<strong>in</strong> 50<br />

FO021D 10 Th<strong>in</strong> 17<br />

FO026A 10 Th<strong>in</strong> 47<br />

FO027D 10 Th<strong>in</strong> 16<br />

FO030G 10 Th<strong>in</strong> 16<br />

FO013W 11 Clearfell 17<br />

FO014Y 11 Clearfell 1<br />

FO028B 11 Th<strong>in</strong> 67<br />

FO030V 11 Th<strong>in</strong> 74<br />

FO006C 12 Th<strong>in</strong> 59<br />

FO013W 12 Clearfell 23<br />

FO026Z 12 Th<strong>in</strong> 98<br />

FO013W 13 Clearfell 5<br />

FO021A 13 Clearfell 29<br />

FO020A 14 Clearfell 14<br />

FO021A 14 Clearfell 22<br />

FO020A 15 Clearfell 33<br />

FO021A 15 Clearfell 5<br />

33


8. Future research needs<br />

The data collected at Florent<strong>in</strong>e and Forestier support <strong>the</strong> <strong>use</strong> <strong>of</strong> a s<strong>in</strong>gle <strong>water</strong>-<strong>use</strong> model<br />

which <strong>in</strong>cludes a ra<strong>in</strong>fall term for E. <strong>nitens</strong> <strong>in</strong> <strong>the</strong>se locations. Without studies <strong>in</strong> a sample <strong>of</strong><br />

o<strong>the</strong>r locations experienc<strong>in</strong>g vastly different climate and ra<strong>in</strong>fall, or <strong>the</strong> <strong>use</strong> <strong>of</strong> calibrated<br />

models for o<strong>the</strong>r locations, conclusions cannot yet be made about <strong>the</strong> general applicability <strong>of</strong><br />

<strong>the</strong> model to <strong>plantations</strong> <strong>in</strong> areas experienc<strong>in</strong>g vastly different conditions.<br />

E. <strong>nitens</strong> was selected for this study beca<strong>use</strong> it is a widely planted species, for which little<br />

<strong>water</strong>-<strong>use</strong> data have been collected, and was thus deemed to be a good species for a pilot<br />

study. The sites measured had E. <strong>nitens</strong> grow<strong>in</strong>g <strong>in</strong> uniform stands with sparse understorey<br />

which reduced <strong>the</strong> complexity <strong>of</strong> measurement. The methods <strong>use</strong>d <strong>in</strong> E. <strong>nitens</strong> to measure<br />

and model <strong>water</strong>-<strong>use</strong> are likely to be successful for o<strong>the</strong>r tree-dom<strong>in</strong>ated ecosystems<br />

<strong>in</strong>clud<strong>in</strong>g <strong>plantations</strong> and native forests, although it is possible that fur<strong>the</strong>r parameters such as<br />

age, understorey density, soil <strong>water</strong>-hold<strong>in</strong>g capacity, or access to ground<strong>water</strong> (Benyon et<br />

al., 2009) may need to be added to <strong>the</strong> model to make it more widely applicable. Exist<strong>in</strong>g<br />

data on streamflow and <strong>water</strong>-<strong>use</strong> for o<strong>the</strong>r vegetation types may allow basal area: <strong>water</strong>-<strong>use</strong><br />

models to be constructed for <strong>the</strong>m, or new studies or calibration <strong>of</strong> process models may be<br />

required.<br />

Be<strong>in</strong>g able to predict <strong>the</strong> <strong>water</strong>-<strong>use</strong> <strong>of</strong> an array <strong>of</strong> commercial forest and plantation types will<br />

enable <strong>the</strong>ir <strong>in</strong>fluence on <strong>water</strong> resources to be evaluated. This is <strong>use</strong>ful for forest managers<br />

who are exchang<strong>in</strong>g trees for trees, but less <strong>use</strong>ful for forest managers that are convert<strong>in</strong>g<br />

o<strong>the</strong>r vegetation types such as grassland to plantation, and less <strong>use</strong>ful for catchment managers<br />

who may want to know <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> all land management activities occurr<strong>in</strong>g <strong>in</strong> a<br />

catchment. Be<strong>in</strong>g able to quantify <strong>the</strong> <strong>water</strong>-<strong>use</strong> <strong>of</strong> all land <strong>use</strong> types for <strong>in</strong>clusion <strong>in</strong> <strong>the</strong><br />

FEM would allow an even more <strong>use</strong>ful tool to be developed.<br />

The data collected <strong>in</strong> <strong>the</strong> Florent<strong>in</strong>e and Forestier studies have only been studied at <strong>the</strong> annual<br />

level. The data can potentially be <strong>use</strong>d for a range <strong>of</strong> o<strong>the</strong>r purposes such as comparison to<br />

streamflow studies, physiological studies, l<strong>in</strong>kage to leaf area measurements made by<br />

University <strong>of</strong> Tasmania, and comparison to LIDAR data as collected at Florent<strong>in</strong>e dur<strong>in</strong>g <strong>the</strong><br />

study period for validation <strong>of</strong> estimates <strong>of</strong> plantation parameters made from LIDAR. Daily,<br />

monthly and seasonal values can be compared to climate to better understand <strong>the</strong> <strong>in</strong>fluence <strong>of</strong><br />

climatic variables on plantation <strong>water</strong>-<strong>use</strong>. The associations between plantation <strong>water</strong>-<strong>use</strong>,<br />

streamflow, and ground<strong>water</strong> need fur<strong>the</strong>r exploration.<br />

Uncerta<strong>in</strong>ties have not been calculated for any <strong>of</strong> <strong>the</strong> <strong>water</strong>-<strong>use</strong> measurements. Identify<strong>in</strong>g<br />

and quantify<strong>in</strong>g all <strong>of</strong> <strong>the</strong> potential sources <strong>of</strong> error <strong>in</strong> <strong>the</strong> <strong>water</strong>-<strong>use</strong> measurements would<br />

help to def<strong>in</strong>e <strong>the</strong> certa<strong>in</strong>ty <strong>of</strong> <strong>the</strong> results.<br />

Any FEM <strong>water</strong>-<strong>use</strong> model is only as good as <strong>the</strong> basal area estimates that it is based upon.<br />

ProMod is <strong>the</strong> model that underp<strong>in</strong>s FT’s FEM. ProMod predicted basal area to with<strong>in</strong> 10%<br />

<strong>of</strong> <strong>the</strong> measured value <strong>in</strong> <strong>the</strong> Florent<strong>in</strong>e Valley. ProMod underestimated basal area at <strong>the</strong><br />

34


s<strong>in</strong>gle Forestier site <strong>of</strong> age 6 -7 years (20-25 m 2 /ha predicted versus a value <strong>of</strong> around 30<br />

m 2 /ha measured at <strong>the</strong> site), however <strong>the</strong> research plot is located <strong>in</strong> a better part <strong>of</strong> <strong>the</strong> stand<br />

so it is probable that ProMod represents <strong>the</strong> average basal area <strong>of</strong> <strong>the</strong> stand ra<strong>the</strong>r than <strong>the</strong><br />

basal area <strong>of</strong> <strong>the</strong> best quality part <strong>of</strong> <strong>the</strong> stand. Growth models should cont<strong>in</strong>ue to be<br />

developed and ref<strong>in</strong>ed as new data are collected.<br />

35


9. Discussion and Conclusions<br />

Annual plantation <strong>water</strong>-<strong>use</strong> was strongly l<strong>in</strong>ked to plantation basal area. It is not common<br />

for researchers to compare plot <strong>water</strong>-<strong>use</strong> to plot basal area, although <strong>the</strong>y frequently identify<br />

strong relationships between stem diameter and stem transpiration (Vertessy et al., 1995;<br />

Moore, 1993; O’Grady et al., 1999; Kalma et al., 1997). It is also possible for <strong>the</strong>re to be no<br />

identifiable relationship between stem diameter and stem transpiration (Forrester et al., 2010).<br />

Basal area is a function <strong>of</strong> stem diameter, so where relationships are found between<br />

transpiration and stem diameter, <strong>the</strong>y will also exist with basal area.<br />

There was a strong relationship between sapwood area and stem diameter (or basal area<br />

calculated from stem diameter) <strong>in</strong> E. <strong>nitens</strong> and this was consistent between sites. It is typical<br />

for <strong>the</strong>se parameters to be strongly l<strong>in</strong>ked (Roberts, 2001; Macfarlane et al., 2010; Benyon<br />

and Doody, 2004; Forrester et al., 2010).<br />

Ra<strong>in</strong>fall <strong>in</strong> <strong>the</strong> year <strong>of</strong> measurement also <strong>in</strong>fluenced <strong>water</strong>-<strong>use</strong> <strong>in</strong> <strong>the</strong> Florent<strong>in</strong>e Valley. Wet<br />

rough surfaces such as forests will , <strong>in</strong> general, have actual evapotranspiration rates at <strong>the</strong><br />

potential rate until <strong>the</strong> <strong>water</strong> supply for <strong>the</strong> soil becomes limit<strong>in</strong>g (Beven, 2005). The amount<br />

and seasonal distribution <strong>of</strong> ra<strong>in</strong>fall will <strong>the</strong>refore affect annual <strong>water</strong>-<strong>use</strong>.<br />

For <strong>the</strong> plantation ages measured, basal area appears to provide an adequate description <strong>of</strong><br />

site quality to predict <strong>water</strong>-<strong>use</strong>. Basal area reflects <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> <strong>the</strong> suite <strong>of</strong> biotic and<br />

abiotic <strong>in</strong>fluences on growth and <strong>water</strong>-<strong>use</strong> for <strong>the</strong> lifetime <strong>of</strong> <strong>the</strong> plantation. Leaf area<br />

(which may be available for <strong>the</strong> plantation estate <strong>in</strong> <strong>the</strong> future after collection and process<strong>in</strong>g<br />

<strong>of</strong> LIDaR) may also be <strong>use</strong>ful for determ<strong>in</strong><strong>in</strong>g <strong>water</strong>-<strong>use</strong> <strong>of</strong> <strong>plantations</strong> <strong>in</strong> <strong>the</strong> future. Leaf<br />

area was an important determ<strong>in</strong>ant <strong>of</strong> plantation <strong>water</strong>-<strong>use</strong> (or transpiration) at o<strong>the</strong>r locations<br />

(Hatton and Wu, 1995; Forrester et al., 2010). Leaf area will be <strong>the</strong> subject <strong>of</strong> fur<strong>the</strong>r study.<br />

ProMod and CABALA were <strong>the</strong> process models that are most likely to be able to predict<br />

basal area and <strong>water</strong>-<strong>use</strong> <strong>of</strong> E. <strong>nitens</strong> <strong>in</strong> Tasmania. ProMod needs to be modified to give<br />

annual <strong>water</strong>-<strong>use</strong> estimates. CABALA needs fur<strong>the</strong>r calibration for E. <strong>nitens</strong>. These models,<br />

when correctly calibrated will potentially be <strong>use</strong>ful for ref<strong>in</strong><strong>in</strong>g <strong>the</strong> basal area: <strong>water</strong>-<strong>use</strong><br />

model and expand<strong>in</strong>g it to o<strong>the</strong>r regions.<br />

The data collected so far do not <strong>in</strong>dicate a need to <strong>use</strong> separate basal area: <strong>water</strong>-<strong>use</strong> functions<br />

for E. <strong>nitens</strong> <strong>in</strong> different parts <strong>of</strong> Tasmania. However it would be wise to conduct fur<strong>the</strong>r<br />

test<strong>in</strong>g to show that this is true. Use <strong>of</strong> <strong>the</strong> model on ma<strong>in</strong>land Australia or <strong>in</strong> regions<br />

experienc<strong>in</strong>g substantially different conditions would require test<strong>in</strong>g to determ<strong>in</strong>e <strong>the</strong> effects<br />

<strong>of</strong> different productivity, ra<strong>in</strong>fall, soil types and PET.<br />

<strong>Predict<strong>in</strong>g</strong> plantation <strong>water</strong>-<strong>use</strong> from forest estate models makes sense for a number <strong>of</strong><br />

reasons:<br />

• Most sizeable forest companies already have FEMs. They are vital tools for<br />

forest management plann<strong>in</strong>g.<br />

36


• FEMs represent <strong>the</strong> best available source <strong>of</strong> <strong>in</strong>formation about <strong>the</strong> plantation<br />

and forest estate, <strong>in</strong>clud<strong>in</strong>g species, structure, management and growth. The<br />

quality <strong>of</strong> this <strong>in</strong>formation is improv<strong>in</strong>g all <strong>the</strong> time as new data are<br />

<strong>in</strong>corporated.<br />

• FEMs are optimisation tools that allow a range <strong>of</strong> scenarios to be assessed<br />

given a host <strong>of</strong> constra<strong>in</strong>ts and <strong>the</strong>y are able to compare <strong>the</strong> f<strong>in</strong>ancial<br />

outcomes, wood production, product mix and stand<strong>in</strong>g volumes that will result<br />

from various scenarios.<br />

• FEMs can schedule events over long periods to best allow management<br />

objectives to be achieved.<br />

A simple empirical model l<strong>in</strong>ks E. <strong>nitens</strong> plantation <strong>water</strong>-<strong>use</strong> to plantation basal area. Most<br />

Australian attempts to quantify <strong>the</strong> effects <strong>of</strong> <strong>plantations</strong> on <strong>water</strong> resources have focussed on<br />

streamflow ra<strong>the</strong>r than <strong>water</strong>-<strong>use</strong> and none have attempted to l<strong>in</strong>k with exist<strong>in</strong>g forest<br />

management tools. Forest companies do not manage entire catchments, do not know where<br />

all streams are or how much <strong>water</strong> is dra<strong>in</strong><strong>in</strong>g from <strong>the</strong>m and do not have <strong>the</strong> tools or<br />

capacity to operate catchment models for anyth<strong>in</strong>g o<strong>the</strong>r than small-scale studies. This makes<br />

streamflow an impractical basis for plann<strong>in</strong>g forest management to benefit <strong>water</strong> resources.<br />

The National Water Initiative recognises that large-scale plantation forestry may <strong>in</strong>tercept<br />

significant volumes <strong>of</strong> <strong>water</strong>, and makes provision for <strong>the</strong> regulation <strong>of</strong> large-scale plantation<br />

forestry to reduce <strong>the</strong> risk to <strong>water</strong> access entitlements or to achieve environmental<br />

objectives. Forest <strong>in</strong>dustry, land managers and regulators are not currently <strong>in</strong> a position to<br />

quantify large-scale plantation <strong>in</strong>terception <strong>in</strong> a way that takes account <strong>of</strong> <strong>the</strong> variation that<br />

occurs <strong>in</strong> <strong>in</strong>terception <strong>in</strong> response to plantation health and growth. Incorporation <strong>of</strong> <strong>water</strong>-<strong>use</strong><br />

data <strong>in</strong> FEMs could produce <strong>water</strong> <strong>in</strong>terception predictions for <strong>plantations</strong> to <strong>in</strong>form <strong>the</strong>se<br />

decisions.<br />

37


10. Recommendations<br />

Based on <strong>the</strong> results <strong>of</strong> this study, we recommend that:<br />

• Spatial ra<strong>in</strong>fall data are <strong>in</strong>cluded <strong>in</strong> Forestry Tasmania’s FEM so that <strong>the</strong> <strong>water</strong><strong>use</strong><br />

function can be easily applied to all E.<strong>nitens</strong> <strong>plantations</strong> <strong>in</strong> Tasmania.<br />

• Exist<strong>in</strong>g <strong>water</strong>-<strong>use</strong> and streamflow data for o<strong>the</strong>r plantation species and native<br />

forests are reviewed to see if basal area: <strong>water</strong>-<strong>use</strong> functions can be created for<br />

<strong>the</strong>m with m<strong>in</strong>imal collection <strong>of</strong> new data.<br />

• The outputs from ProMod are tweaked so that annual <strong>water</strong>-<strong>use</strong> estimates are<br />

provided for comparison to measured values.<br />

• CABALA is calibrated for E.<strong>nitens</strong> us<strong>in</strong>g data collected dur<strong>in</strong>g this study.<br />

• Plantation owners that need or choose to consider plantation <strong>water</strong>-<strong>use</strong> dur<strong>in</strong>g<br />

<strong>the</strong>ir plann<strong>in</strong>g processes consider <strong>in</strong>clud<strong>in</strong>g <strong>water</strong>-<strong>use</strong> functions <strong>in</strong> <strong>the</strong>ir forest<br />

estate models to aid <strong>in</strong> decision mak<strong>in</strong>g.<br />

• Fur<strong>the</strong>r data collection, <strong>use</strong> <strong>of</strong> process models and creation <strong>of</strong> empirical models is<br />

undertaken to enable <strong>the</strong> development <strong>of</strong> <strong>water</strong>-<strong>use</strong> functions for a wider range <strong>of</strong><br />

plantation species.<br />

• When appropriate, regulators consider evaluat<strong>in</strong>g <strong>the</strong> impacts <strong>of</strong> proposed<br />

management on <strong>water</strong> resources from a <strong>water</strong>-<strong>use</strong> ra<strong>the</strong>r than streamflow<br />

perspective.<br />

38


11. References<br />

Battaglia, M., and Sand, P. 1997. Modell<strong>in</strong>g Site Productivity <strong>of</strong> <strong>Eucalyptus</strong> globulus <strong>in</strong><br />

Response to Climatic and Site Factors. Australian Journal Plant Physiology 24:831-850.<br />

Battaglia, M., Sands, P., White, D., and Mummery, D. 2004. CABALA: a l<strong>in</strong>ked carbon,<br />

<strong>water</strong> and nitrogen model <strong>of</strong> forest growth for silvicultural decision support. Forest Ecology<br />

and Management 193 (1-2): 251-282.<br />

Benyon, R.G. and Doody, T.M. 2004. Water <strong>use</strong> by tree <strong>plantations</strong> <strong>in</strong> south east South<br />

Australia. CSIRO Forestry and Forest Products Technical Report No. 148.<br />

Benyon, R.G., Doody, T.M., Theiveyanathan, S. and Koul, V. 2009. Plantation forest <strong>water</strong><br />

<strong>use</strong> <strong>in</strong> southwest Victoria. Forests and Wood Products <strong>of</strong> Australia, Susta<strong>in</strong>ability and<br />

Resources, Project No: PNC064-0607, June 2009.<br />

Best, A., Zhang, L., McMahon, T., Western, A., and Vertessy, R. 2003. A critical review <strong>of</strong><br />

paired catchment studies with reference to seasonal flows and climatic variability. CSIRO<br />

Land and Water Technical Report No. 25/03.<br />

Beven, K. 2005. Ra<strong>in</strong>fall-run<strong>of</strong>f modell<strong>in</strong>g. John Wiley and Sons, England.<br />

Bosch, J.M., and Hewlett, J.D. 1982. A review <strong>of</strong> catchment experiments to determ<strong>in</strong>e <strong>the</strong><br />

effect <strong>of</strong> vegetation changes on <strong>water</strong> yield and evapotranspiration. Journal <strong>of</strong> Hydrology 55:<br />

3-23.<br />

Bren, L., and Hopmans, P. 2007. Paired catchments observations on <strong>the</strong> <strong>water</strong> yield <strong>of</strong><br />

mature eucalypt and immature radiata p<strong>in</strong>e <strong>plantations</strong> <strong>in</strong> Victoria, Australia. Journal <strong>of</strong><br />

Hydrology 336: 416-429.<br />

Bren, L., Lane, P., and McGuire, D. 2006. An empirical, comparative model <strong>of</strong> changes <strong>in</strong><br />

annual <strong>water</strong> yield associated with p<strong>in</strong>e <strong>plantations</strong> <strong>in</strong> sou<strong>the</strong>rn Australia. Australian Forestry<br />

69 (4): 275-284.<br />

Brown, A.E., Hairs<strong>in</strong>e, P.B. and Freebairn, A. 2006. The development <strong>of</strong> <strong>the</strong> Tasmanian<br />

Land Use Change and Streamflow (TasLUCaS) tool. Report to <strong>the</strong> Tasmanian Natural<br />

Resource Management Committees. CSIRO Land and Water Science Report No. 54/06, July<br />

2006.<br />

Cornish, P., and Vertessy, R. 2001. Forest age <strong>in</strong>duced changes <strong>in</strong> evapotranspiration and<br />

<strong>water</strong> yield <strong>in</strong> eucalypt forest. Journal <strong>of</strong> Hydrology 150: 301-322.<br />

Council <strong>of</strong> Australian Governments (COAG) 2005, Intergovernmental Agreement on a<br />

National Water Initiative, between <strong>the</strong> Commonwealth <strong>of</strong> Australia and <strong>the</strong> Governments <strong>of</strong><br />

New South Wales, Victoria, Queensland, South Australia, <strong>the</strong> Australian Capital Territory,<br />

<strong>the</strong> Nor<strong>the</strong>rn Territory, Tasmania and Western Australia.<br />

(http://www.nwc.gov.au/reform/nwi)<br />

39


Department <strong>of</strong> Susta<strong>in</strong>ability and Environment. 2011. Manag<strong>in</strong>g adverse <strong>water</strong> resource<br />

impacts <strong>of</strong> land <strong>use</strong> changes. Policy Paper, State Government <strong>of</strong> Victoria, November 2011.<br />

Department for Water. 2012. Lower Limestone Coast Water Allocation Plan Policy<br />

Pr<strong>in</strong>ciples. Lower Limecoast Water Allocation Plan Taskforce. South Australia.<br />

Feikema, P., Beverly, C., Morris, J., Collopy, J., Baker, T. and Lane, P. 2007. <strong>Predict<strong>in</strong>g</strong><br />

<strong>the</strong> Impacts <strong>of</strong> Plantations on Catchment Water Balances Us<strong>in</strong>g <strong>the</strong> 3PG Forest Growth<br />

Model. In Oxley, L. and Kulasiri, D. (eds) MODSIM 2007 International Congress on<br />

Modell<strong>in</strong>g and Simulation. Modell<strong>in</strong>g and Simulation Society <strong>of</strong> Australia and New Zealand,<br />

December 2007, pp. 2237-2243.<br />

Forest Practices Board. 2000. Forest Practices Code, Forest Practices Board, Hobart,<br />

Tasmania.<br />

Forest Practices Tribunal. 2009. The hear<strong>in</strong>g <strong>of</strong> an appeal aga<strong>in</strong>st <strong>the</strong> decision <strong>of</strong> <strong>the</strong> Forest<br />

Practice Authority to grant an application for declaration <strong>of</strong> land at Irishtown near St Marys,<br />

as a Private Timber Reserve. DW Clement on behalf <strong>of</strong> TB O’Neill v Forest Practices<br />

Authority and RB Curran. 16 March 2009.<br />

Forrester, D.I., Collopy, J.J. and Morris, J.D. 2010. Transpiration along an age series <strong>of</strong><br />

<strong>Eucalyptus</strong> globulus <strong>plantations</strong> <strong>in</strong> sou<strong>the</strong>astern Australia. Forest Ecology and Management<br />

259: 1754-1760.<br />

Grant, J., Laffan, M., Hill, R., and Nielson, W. 1995. Forest soils <strong>of</strong> Tasmania. A handbook<br />

for identification and management. Forestry Tasmania, Hobart.<br />

Harvey, D. 2009. Account<strong>in</strong>g for plantation forest ground<strong>water</strong> impacts <strong>in</strong> <strong>the</strong> lower South<br />

East <strong>of</strong> South Australia. Science, Monitor<strong>in</strong>g and Information Division, Department <strong>of</strong><br />

Water, Land and Biodiversity Conservation 2009/13.<br />

Hatton, T. and Vertessy, R. 1990. Transpiration <strong>of</strong> plantation P<strong>in</strong>us radiata estimated by <strong>the</strong><br />

heat pulse method and <strong>the</strong> bowen ratio. Hydrological Processes 4: 289-298.<br />

Hatton, T. and Wu, H.I. 1995. Scal<strong>in</strong>g <strong>the</strong>ory to extrapolate <strong>in</strong>dividual tree <strong>water</strong> <strong>use</strong> to<br />

stand. Hydrological Processes 9: 5-6.<br />

Hennes, L.C., Irv<strong>in</strong>g, M.J., and Navon, D.I. 1970. Forest Control and Regulation: a<br />

comparison <strong>of</strong> traditional methods and alternatives. USDA Forest Service Research Note<br />

PSW-237.<br />

Hydro Tasmania Consult<strong>in</strong>g. 2007. Water Availability and Forest Land<strong>use</strong> Plann<strong>in</strong>g Tool<br />

Report. Hydro-Electric Corporation, September 2007.<br />

Kalma, S., Thorburn, P. and Dunn, G. 1997. Us<strong>in</strong>g heat pulse and deuterium trac<strong>in</strong>g<br />

techniques to estimate tree <strong>water</strong> <strong>use</strong>. In Subsurface Hydrological Responses to Land Cover<br />

and Land Use Changes, ed. M. Taniguchi, Kluwer Academic Publishers, Boston, pp. 47-60.<br />

40


Macfarlane, C., Bond, C., White, D.A., Grigg, A.H., Ogden, G.N. and Silberste<strong>in</strong>, R. 2010.<br />

Transpiration and hydraulic traits <strong>of</strong> old and regrowth eucalypt forest <strong>in</strong> southwestern<br />

Australia. Forest Ecology and Management 260: 96-105.<br />

McJannet, D., Vertessy, R. and Clifton, C. 2000. Observations <strong>of</strong> evapotranspiration <strong>in</strong> a<br />

break <strong>of</strong> slope plantation susceptible to periodic drought stress. Tree Physiology 20: 169-<br />

177.<br />

McLar<strong>in</strong>, M., Osborn, T., and Bennett, L. 2006. Creat<strong>in</strong>g dynamic yield tables for forest<br />

estate modell<strong>in</strong>g. Australian Forestry 69(2):79-82.<br />

Moore, S. 1993. Estimat<strong>in</strong>g stand transpiration <strong>in</strong> a <strong>Eucalyptus</strong> populnea woodland. In<br />

School <strong>of</strong> Resource and Environmental Management, Australian National University,<br />

Canberra, pp. 97.<br />

O’Grady, A., Eamus, D. and Hutley, L. 1999. Transpiration <strong>in</strong>crease dur<strong>in</strong>g <strong>the</strong> dry season:<br />

patterns <strong>of</strong> tree <strong>water</strong> <strong>use</strong> <strong>in</strong> eucalypt open forests <strong>of</strong> nor<strong>the</strong>rn Australia. Tree Physiology 19:<br />

591-597.<br />

Putuhena, W. and Cordery, I.: 1996, Estimation <strong>of</strong> <strong>in</strong>terception capacity <strong>of</strong> <strong>the</strong> forest floor,<br />

Journal <strong>of</strong> Hydrology 180: 283–299.<br />

Rayner, D. 2006. Australian syn<strong>the</strong>tic dailuy Class A pan evaporation. Queensland<br />

Department <strong>of</strong> Natural Resources and M<strong>in</strong>es Technical Report, December 2005.<br />

(http://www.longpaddock.qld.gov.au/silo/documentation/AustralianSyn<strong>the</strong>ticDailyClassAPan<br />

Evaporation.pdf )<br />

Roberts, S.L. 2001. Water yield and transpiration <strong>of</strong> <strong>Eucalyptus</strong> sieberi forests <strong>of</strong> different<br />

age. PhD Thesis, Department <strong>of</strong> Civil and Environmental Eng<strong>in</strong>eer<strong>in</strong>g, The University <strong>of</strong><br />

Melbourne.<br />

Roberts, S., Montagu, K., Walsh, P., Barton, C., Cowie, A., and Parekh, J. 2002.<br />

Re<strong>in</strong>troduc<strong>in</strong>g trees to dryland sal<strong>in</strong>ity prone regions <strong>of</strong> New South Wales. Proceed<strong>in</strong>gs <strong>of</strong><br />

<strong>the</strong> National Low Ra<strong>in</strong>fall Farm Forestry Conference, Horsham, pp. 169-180.<br />

Roberts, S. 2010. Water-<strong>use</strong> <strong>of</strong> <strong>Eucalyptus</strong> <strong>nitens</strong> <strong>plantations</strong> <strong>in</strong> <strong>the</strong> Florent<strong>in</strong>e Valley,<br />

Tasmania - Prelim<strong>in</strong>ary Results. Report submitted to FWPA, August 2010. Plantations<br />

Branch, Division <strong>of</strong> Forest Research and Development, Forestry Tasmania.<br />

Roberts, S. 2011. <strong>Predict<strong>in</strong>g</strong> <strong>Eucalyptus</strong> <strong>nitens</strong> Plantation <strong>water</strong>-<strong>use</strong> us<strong>in</strong>g growth<br />

parameters – comparisons <strong>of</strong> field results with exist<strong>in</strong>g models. Report submitted to FWPA<br />

April 2011. Plantations Branch, Division <strong>of</strong> Forest Research and Development, Forestry<br />

Tasmania.<br />

Roberts, S. 2011A. Water-<strong>use</strong> <strong>of</strong> <strong>Eucalyptus</strong> <strong>nitens</strong> <strong>plantations</strong> <strong>in</strong> <strong>the</strong> Florent<strong>in</strong>e Valley,<br />

Tasmania. Report submitted to FWPA, August 2011. Plantations Branch, Division <strong>of</strong><br />

Forest Research and Development, Forestry Tasmania.<br />

41


Roberts, S., and Barton-Johnson, R. 2009. Prediction <strong>of</strong> <strong>Eucalyptus</strong> <strong>nitens</strong> plantation <strong>water</strong><strong>use</strong><br />

with tree growth parameters: Plantation <strong>water</strong>-<strong>use</strong> research, Florent<strong>in</strong>e Valley, Tasmania<br />

- Site Establishment Report. Report submitted to FWPA, December 2009. Plantations<br />

Branch, Division <strong>of</strong> Forest Research and Development, Forestry Tasmania.<br />

Roberts, S., Vertessy, R. and Grayson, R. 2001. Transpiration from <strong>Eucalyptus</strong> sieberi<br />

forests <strong>of</strong> different age. Forest Ecology and Management 143: 153-161.<br />

Ryan, M. and Yoder, B. 1997. Hydraulic limits to tree height and growth: What keeps trees<br />

from grow<strong>in</strong>g beyond a certa<strong>in</strong> height? Bioscience 47(4): 235-242<br />

Sands, P., Battaglia, M. and Mummery, D. 2000. Application <strong>of</strong> process-based models to<br />

forest management: experience with PROMOD, a simple plantation productivity model.<br />

Tree Physiology 20 (5-6):383-392.<br />

Silo Data Drill. Queensland Department <strong>of</strong> Environment and Resource Management.<br />

(http://www.derm.qld.gov.au/services_resources/item_details.php?item_id=33897)<br />

Vertessy, R., Benyon, R., O’Sullivan, S. and Gribben, P. 1995. Relationships between stem<br />

diameter, sapwood area, leaf area and transpiration <strong>in</strong> young mounta<strong>in</strong> ash forest. Tree<br />

Physiology 15: 559-567.<br />

Vertessy, R.A. 2001. Impacts <strong>of</strong> plantation forestry on catchment run<strong>of</strong>f. In: E.K. Nambiar<br />

and A.G.Brown (Eds.) Plantations, Farm Forestry and Water, Proceed<strong>in</strong>gs <strong>of</strong> a National<br />

Workshop, Melbourne, July 21-22, 2000. RIRDC Report No. 01/20.<br />

Vertessy, R., Watson, F. and O’Sullivan, S. 2001. Factors determ<strong>in</strong><strong>in</strong>g relationships<br />

between stand age and catchment <strong>water</strong> balance <strong>in</strong> mounta<strong>in</strong> ash forests. Forest Ecology and<br />

Management 143: 13-26.<br />

42


12. Acknowledgements<br />

This research was funded by The Tasmanian Community Forestry Agreement, <strong>the</strong> FWPA<br />

and Forestry Tasmania. Rebecca Barton-Johnson, Karl Abetz and Crispen Marunda regularly<br />

braved <strong>the</strong> elements to collect field data. The steer<strong>in</strong>g committee - Don White, Tony<br />

O’Grady, Stephen Elms, and Chris Lafferty - provided <strong>use</strong>ful advice.<br />

43


13. Appendix<br />

ProMod outputs for Florent<strong>in</strong>e and Forestier<br />

44


Site productivity<br />

FFT v4.158 Saved 29/3/2011<br />

Florent<strong>in</strong>eHydrologyStudy E. <strong>nitens</strong><br />

Location: East<strong>in</strong>g = 456323 North<strong>in</strong>g = 5282925 Aspect = W Elevation (m) = 400<br />

Soil: Slope % = 1 Depth (cm) = 200 Ston<strong>in</strong>ess % = 20<br />

Fertility: not limited Texture: well-structured clay-loam Dra<strong>in</strong>age: good dra<strong>in</strong>age<br />

Climate: Month Temp(max) Temp(m<strong>in</strong>) Ra<strong>in</strong>fall Radiation Pan Evap. Ra<strong>in</strong> Days<br />

(°C) (°C) (mm) (MJ/m²/day) (mm)<br />

Jan 21.0 8.0 82 22.0 4.0 18.0<br />

Feb 21.0 8.0 66 19.0 4.0 16.0<br />

Mar 18.0 7.0 85 15.0 3.0 19.0<br />

April 15.0 5.0 111 10.0 2.0 23.0<br />

May 12.0 4.0 134 7.0 1.0 26.0<br />

June 10.0 2.0 124 6.0 1.0 25.0<br />

July 9.0 1.0 147 6.0 1.0 27.0<br />

Aug 10.0 2.0 155 9.0 1.0 27.0<br />

Sep 12.0 3.0 159 12.0 2.0 25.0<br />

Oct 15.0 4.0 145 17.0 3.0 24.0<br />

Nov 17.0 6.0 116 20.0 3.0 21.0<br />

Dec 19.0 7.0 110 21.0 4.0 20.0<br />

Site: SQ <strong>in</strong>dex (ProMod) = 30.0 m Predicted peak MAI = 34 m³/ha/yr<br />

Age at peak MAI = 20 yr<br />

Total pan evaporation = 879 mm/yr<br />

Mean maximum temp. = 14.9 °C Soil <strong>water</strong> capacity = 272 mm<br />

Mean m<strong>in</strong>imum temp. = 4.8 °C Total run<strong>of</strong>f+dra<strong>in</strong>age = 741 mm/yr<br />

Mean daily temp. = 9.8 °C Drought stress [0-1] = 0.95<br />

Total solar radiation = 5.0 GJ/m²/yr Closed canopy LAI = 6.12<br />

Annual ra<strong>in</strong> days = 271 days/yr Light <strong>use</strong> efficiency = 0.79 gDM/MJ<br />

Total ra<strong>in</strong>fall = 1434 mm/yr Total stand <strong>water</strong> <strong>use</strong> = 695 mm/yr<br />

Net Primary Production = 37.53 t/ha/yr


Growth: Age MDH BA Vol MAI<br />

(yr) (m) (m²/ha) (m³/ha) (m³/ha/yr)<br />

3 10 6 20 7<br />

4 12 10 46 12<br />

5 14 15 78 16<br />

6 16 20 114 19<br />

7 18 24 153 22<br />

8 20 28 196 24<br />

9 22 32 239 27<br />

10 23 35 279 28<br />

11 25 38 325 30<br />

12 26 41 367 31<br />

13 27 43 407 31<br />

14 29 45 451 32<br />

15 30 47 490 33<br />

16 31 49 528 33<br />

17 32 51 568 33<br />

18 33 52 604 34<br />

19 34 54 642 34<br />

20 35 55 680 34<br />

21 36 56 712 34<br />

22 37 57 747 34<br />

23 38 59 782 34<br />

24 39 60 810 34<br />

25 40 61 843 34<br />

26 40 61 874 34<br />

27 41 62 899 33<br />

28 42 63 928 33<br />

29 42 64 957 33<br />

30 43 65 985 33<br />

31 44 65 1006 32<br />

32 44 66 1032 32<br />

33 45 67 1058 32<br />

34 45 67 1083 32<br />

35 46 68 1107 32<br />

36 46 68 1123 31<br />

37 47 69 1146 31<br />

38 47 69 1167 31<br />

39 48 70 1189 30<br />

40 48 70 1209 30<br />

41 49 71 1229 30<br />

42 49 71 1241 30<br />

43 50 72 1260 29<br />

44 50 72 1278 29<br />

45 50 72 1296 29<br />

46 51 73 1313 29<br />

47 51 73 1329 28<br />

48 51 73 1345 28<br />

49 52 74 1361 28<br />

50 52 74 1368 27


SQ is Site Quality Vol is <strong>the</strong> sum <strong>of</strong> all tree stem wood volumes under bark from ground to top<br />

SQ <strong>in</strong>dex is MDH at age 15 yrs BA is Basal Area (cross-sectional area <strong>of</strong> all trees over bark at 1.3m high)<br />

MDH is Mean Dom<strong>in</strong>ant Height MAI is Mean Annual Increment <strong>of</strong> Vol<br />

LAI is Leaf Area Index (ratio <strong>of</strong> leaf area to ground area)<br />

NOTE: Growth data are for an unth<strong>in</strong>ned stand planted at 1000 stems/ha.<br />

WARNING: Results shown are based on assumptions regard<strong>in</strong>g <strong>in</strong>put costs,<br />

revenues. Product yields from growth models may be <strong>in</strong>dicative only.<br />

Pr<strong>of</strong>essional advice should be sought before act<strong>in</strong>g on any output model.


Site productivity<br />

FFT v4.158 Saved 15/3/2012<br />

ForestierHydrologyStudy E. <strong>nitens</strong><br />

Location: East<strong>in</strong>g = 575043 North<strong>in</strong>g = 5243134 Aspect = E Elevation (m) = 270<br />

Soil: Slope % = 2 Depth (cm) = 150 Ston<strong>in</strong>ess % = 50<br />

Fertility: good natural site Texture: well-structured clay-loam Dra<strong>in</strong>age: good dra<strong>in</strong>age<br />

Climate: Month Temp(max) Temp(m<strong>in</strong>) Ra<strong>in</strong>fall Radiation Pan Evap. Ra<strong>in</strong> Days<br />

(°C) (°C) (mm) (MJ/m²/day) (mm)<br />

Jan 20.5 10.9 60 23.5 4.5 10.0<br />

Feb 20.8 10.8 62 19.7 4.2 9.6<br />

Mar 19.0 9.5 71 14.2 2.9 12.1<br />

April 16.6 7.8 81 9.6 2.0 12.5<br />

May 13.3 5.7 84 6.1 1.2 14.5<br />

June 11.3 3.8 89 4.9 0.7 13.1<br />

July 10.8 3.3 87 5.7 0.8 14.7<br />

Aug 11.5 3.8 83 8.5 1.3 15.3<br />

Sep 13.4 4.8 64 12.8 2.2 14.3<br />

Oct 15.5 5.7 81 17.2 2.8 14.8<br />

Nov 16.7 7.5 74 20.0 3.5 15.2<br />

Dec 18.5 8.8 91 22.5 4.2 13.6<br />

Site: SQ <strong>in</strong>dex (ProMod) = 30.1 m Predicted peak MAI = 34 m³/ha/yr<br />

Age at peak MAI = 20 yr<br />

Total pan evaporation = 918 mm/yr<br />

Mean maximum temp. = 15.7 °C Soil <strong>water</strong> capacity = 127.5 mm<br />

Mean m<strong>in</strong>imum temp. = 6.9 °C Total run<strong>of</strong>f+dra<strong>in</strong>age = 278 mm/yr<br />

Mean daily temp. = 11.3 °C Drought stress [0-1] = 0.90<br />

Total solar radiation = 5.0 GJ/m²/yr Closed canopy LAI = 5.50<br />

Annual ra<strong>in</strong> days = 160 days/yr Light <strong>use</strong> efficiency = 0.80 gDM/MJ<br />

Total ra<strong>in</strong>fall = 928 mm/yr Total stand <strong>water</strong> <strong>use</strong> = 655 mm/yr<br />

Net Primary Production = 37.61 t/ha/yr


Growth: Age MDH BA Vol MAI<br />

(yr) (m) (m²/ha) (m³/ha) (m³/ha/yr)<br />

3 10 6 21 7<br />

4 12 10 47 12<br />

5 14 15 79 16<br />

6 16 20 116 19<br />

7 18 25 155 22<br />

8 20 28 198 25<br />

9 22 32 239 27<br />

10 23 35 282 28<br />

11 25 38 328 30<br />

12 26 41 371 31<br />

13 28 43 412 32<br />

14 29 45 456 33<br />

15 30 47 495 33<br />

16 31 49 533 33<br />

17 32 51 574 34<br />

18 33 52 610 34<br />

19 34 54 649 34<br />

20 35 55 687 34<br />

21 36 57 719 34<br />

22 37 58 755 34<br />

23 38 59 784 34<br />

24 39 60 818 34<br />

25 40 61 850 34<br />

26 40 62 882 34<br />

27 41 63 907 34<br />

28 42 63 937 33<br />

29 43 64 966 33<br />

30 43 65 995 33<br />

31 44 66 1015 33<br />

32 44 66 1042 33<br />

33 45 67 1067 32<br />

34 46 68 1092 32<br />

35 46 68 1110 32<br />

36 47 69 1133 31<br />

37 47 69 1155 31<br />

38 48 70 1177 31<br />

39 48 70 1198 31<br />

40 48 71 1219 30<br />

41 49 71 1239 30<br />

42 49 71 1251 30<br />

43 50 72 1270 30<br />

44 50 72 1288 29<br />

45 50 73 1306 29<br />

46 51 73 1323 29<br />

47 51 73 1340 29<br />

48 51 74 1356 28<br />

49 52 74 1364 28<br />

50 52 74 1379 28


SQ is Site Quality Vol is <strong>the</strong> sum <strong>of</strong> all tree stem wood volumes under bark from ground to top<br />

SQ <strong>in</strong>dex is MDH at age 15 yrs BA is Basal Area (cross-sectional area <strong>of</strong> all trees over bark at 1.3m high)<br />

MDH is Mean Dom<strong>in</strong>ant Height MAI is Mean Annual Increment <strong>of</strong> Vol<br />

LAI is Leaf Area Index (ratio <strong>of</strong> leaf area to ground area)<br />

NOTE: Growth data are for an unth<strong>in</strong>ned stand planted at 1000 stems/ha.<br />

WARNING: Results shown are based on assumptions regard<strong>in</strong>g <strong>in</strong>put costs,<br />

revenues. Product yields from growth models may be <strong>in</strong>dicative only.<br />

Pr<strong>of</strong>essional advice should be sought before act<strong>in</strong>g on any output model.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!